proof

From statwiki
Jump to: navigation, search

To prove [math]\lambda_{\max}(\sum_{j \in I_k \cup \{i\}} a_ja_j^T) \geq \lambda_{\max}(\sum_{j \in I_k} a_ja_j^T) + (x_k^Ta_i)^2[/math] we begin by finding the subgradient of the function [math]\lambda_{\max}(\cdot)[/math] at the matrix [math]X \in S_n[/math]. To do this we must first define the subgradient.

Definition: A matrix [math]V \in R^{n \times n}[/math] is a subgradiant of a convex function [math]f: R^{n\times n} \rightarrow R[/math] at [math]X[/math] if

[math] f(Y) \geq f(X) + \left\langle V, Y-X \right\rangle \; \forall \; Y \in \textrm{dom}(f) [/math]

where [math]\left\langle \cdot \right\rangle[/math] is the inner product.

The function we are interested in is [math]\lambda_{\max}(\cdot)[/math]. In order to define the subgradiant of this function we must first ensure it is convex. If [math]X \in S_n[/math] then

[math] \lambda_{\max}(X) = \max_{Y\succeq 0, \textrm{trace}(Y) = 1} \textrm{trace}(YX). [/math]

Thus [math]\,\lambda_{\max}(X)[/math] is the maximum of a collection of linear functions which implies that [math]\lambda_{\max}(\cdot)[/math] is a convex function.

So, according to our definition of subgradiant we are looking for a matrix [math]\,V[/math] such that

[math] \lambda_{\max}(Y) \geq \lambda_{\max}(X) + \left\langle V, Y-X \right\rangle. [/math]

Since the trace defines an inner product on the space of symmetric matrices we can rewrite this problem as

[math] \lambda_{\max}(Y) \geq \lambda_{\max}(X) + \textrm{trace}(V(Y-X)). [/math]



Suppose [math]\,q \in R^n[/math] is the eigenvector of [math]\,X[/math] associated with the largest eigenvalue and [math]\,\|q\|_2 = 1[/math]. Since [math]\lambda_{\max}(Y) \geq \textrm{trace}(Yqq^T)[/math] we have

[math]\begin{align} \lambda_{\max}(Y) & \geq \textrm{trace}(Yqq^T) = \textrm{trace}(Xqq^T) + \textrm{trace}((Y-X)qq^T) \\ &= \lambda_{\max}(X) + \textrm{trace}({(Y-X)qq^T})\\ &= \lambda_{\max}(X) + \textrm{trace}(q^T(Y-X)q) \end{align} [/math]


Thus the subgradient is [math]\,V = qq^T[/math] where [math]q \in R^n[/math] is the eigenvector of [math]\,X[/math] associated with the largest eigenvalue and [math]\|q\|_2 = 1[/math].

Now if we let [math]X = \sum_{j \in I_k} a_ja_j^T[/math] and [math]Y = \sum_{j \in I_k \cup \{i\}} a_ja_j^T[/math] and [math]\,x_k[/math] be the eigenvector of [math]\sum_{j \in I_k} a_ja_j^T[/math] associated with the largest eigenvalue then we have

[math]\begin{align} \lambda_{\max}(\sum_{j \in I_k \cup \{i\}} a_ja_j^T) & \geq \lambda_{\max}(\sum_{j \in I_k} a_ja_j^T) + \textrm{trace}(x_i^T(\sum_{j \in I_k \cup \{i\}} a_ja_j^T-\sum_{j \in I_k \cup \{i\}} a_ja_j^T)x_i) \\ & = \lambda_{\max}(\sum_{j \in I_k} a_ja_j^T) + \textrm{trace}(x_k^T(a_ia_i^T)x_i) \\ & = \lambda_{\max}(\sum_{j \in I_k} a_ja_j^T) + (x_k^Ta_i)^2 \end{align} [/math]

Thus, [math]\lambda_{\max}(\sum_{j \in I_k \cup \{i\}} a_ja_j^T) \geq \lambda_{\max}(\sum_{j \in I_k} a_ja_j^T) + (x_k^Ta_i)^2[/math].