visualizing Data using t-SNE
Introduction
The paper <ref>Laurens van der Maaten, and Geoffrey Hinton, 2008. Visualizing Data using t-SNE.</ref> introduced a new nonlinear dimensionally reduction technique that "embeds" high-dimensional data into low-dimensional space. This technique is a variation of the Stochastic Neighbor embedding (SNE) that was proposed by Hinton and Roweis in 2002 <ref>G.E. Hinton and S.T. Roweis, 2002. Stochastic Neighbor embedding.</ref>, where the high-dimensional Euclidean distances between datapoints are converted into the conditional probability to describe their similarities. t-SNE, based on the same idea, is aimed to be easier for optimization and to solve the "crowding problem". In addition, the author showed that t-SNE can be applied to large data sets as well, by using random walks on neighborhood graphs. The performance of t-SNE is demonstrated on a wide variety of data sets and compared with many other visualization techniques.
Stochastic Neighbor Embedding
In SNE, the high-dimensional Euclidean distances between datapoints is first converted into probabilities. The similarity of datapoint [math]\displaystyle{ \mathbf x_i }[/math] to datapoint [math]\displaystyle{ \mathbf j_i }[/math] is then presented by the conditional probability, [math]\displaystyle{ \mathbf p_{j|i} }[/math], that [math]\displaystyle{ \mathbf x_i }[/math] would pick [math]\displaystyle{ \mathbf j_i }[/math] as its neighbor when neighbors are picked in proportion to their probability density under a Gaussian centered at [math]\displaystyle{ \mathbf x_i }[/math]. The [math]\displaystyle{ \mathbf p_{j|i} }[/math] is given as,