visualizing Data using t-SNE: Difference between revisions
Line 1: | Line 1: | ||
=Introduction= | =Introduction= | ||
The paper <ref>Laurens van der Maaten, and Geoffrey Hinton, 2008. Visualizing Data using t-SNE.</ref> introduced a new nonlinear dimensionally reduction technique that | The paper <ref>Laurens van der Maaten, and Geoffrey Hinton, 2008. Visualizing Data using t-SNE.</ref> introduced a new nonlinear dimensionally reduction technique that "embeds" high-dimensional data into low-dimensional space. This technique is a variation of the Stochastic Neighbor embedding (SNE) that was proposed by Hinton and Roweis in 2002 <ref>G.E. Hinton and S.T. Roweis, 2002. Stochastic Neighbor embedding.</ref>, where the high-dimensional Euclidean distances between datapoints are converted into the conditional probability to describe their similarities. t-SNE, based on the same idea, is aimed to be easier for optimization and to solve the "crowding problem". In addition, the author showed that t-SNE can be applied to large data sets as well, by using random walks on neighborhood graphs. The performance of t-SNE is demonstrated on a wide variety of data sets and compared with many other visualization techniques. | ||
=Stochastic Neighbor Embedding= | =Stochastic Neighbor Embedding= |
Revision as of 17:14, 12 July 2009
Introduction
The paper <ref>Laurens van der Maaten, and Geoffrey Hinton, 2008. Visualizing Data using t-SNE.</ref> introduced a new nonlinear dimensionally reduction technique that "embeds" high-dimensional data into low-dimensional space. This technique is a variation of the Stochastic Neighbor embedding (SNE) that was proposed by Hinton and Roweis in 2002 <ref>G.E. Hinton and S.T. Roweis, 2002. Stochastic Neighbor embedding.</ref>, where the high-dimensional Euclidean distances between datapoints are converted into the conditional probability to describe their similarities. t-SNE, based on the same idea, is aimed to be easier for optimization and to solve the "crowding problem". In addition, the author showed that t-SNE can be applied to large data sets as well, by using random walks on neighborhood graphs. The performance of t-SNE is demonstrated on a wide variety of data sets and compared with many other visualization techniques.