f15Stat946PaperSignUp: Difference between revisions
Jump to navigation
Jump to search
(→Set A) |
(→Set A) |
||
Line 79: | Line 79: | ||
|Nov 27 ||Xinran Liu || ||ImageNet Classification with Deep Convolutional Neural Networks ||[http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf Paper]||[[ImageNet Classification with Deep Convolutional Neural Networks|Summary]] | |Nov 27 ||Xinran Liu || ||ImageNet Classification with Deep Convolutional Neural Networks ||[http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf Paper]||[[ImageNet Classification with Deep Convolutional Neural Networks|Summary]] | ||
|- | |- | ||
|Nov 27 ||Ali Sarhadi|| ||Deep Neural Nets as a Method for Quantitative Structure−Activity Relationships|| | |Nov 27 ||Ali Sarhadi|| ||Deep Neural Nets as a Method for Quantitative Structure−Activity Relationships|||| | ||
|- | |- | ||
|Dec 4 || Chris Choi || || On the difficulty of training recurrent neural networks || [http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf Paper] || [[On the difficulty of training recurrent neural networks | Summary]] | |Dec 4 || Chris Choi || || On the difficulty of training recurrent neural networks || [http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf Paper] || [[On the difficulty of training recurrent neural networks | Summary]] |
Revision as of 16:13, 30 October 2015
List of Papers
Record your contributions here:
Use the following notations:
S: You have written a summary on the paper
T: You had technical contribution on a paper (excluding the paper that you present from set A or critique from set B)
E: You had editorial contribution on a paper (excluding the paper that you present from set A or critique from set B)
Your feedback on presentations
Set A
Date | Name | Paper number | Title | Link to the paper | Link to the summary |
Oct 16 | pascal poupart | Guest Lecturer | |||
Oct 16 | pascal poupart | Guest Lecturer | |||
Oct 23 | Ali Ghodsi | Lecturer | |||
Oct 23 | Ali Ghodsi | Lecturer | |||
Oct 23 | Ri Wang | Sequence to sequence learning with neural networks. | Paper | Summary | |
Oct 23 | Deepak Rishi | Parsing natural scenes and natural language with recursive neural networks | Paper | Summary | |
Oct 30 | Ali Ghodsi | Lecturer | |||
Oct 30 | Ali Ghodsi | Lecturer | |||
Oct 30 | Rui Qiao | Going deeper with convolutions | Paper | Summary | |
Oct 30 | Amirreza Lashkari | 21 | Overfeat: integrated recognition, localization and detection using convolutional networks. | Paper | Summary |
Mkeup Class (TBA) | Peter Blouw | Memory Networks. | [1] | Summary | |
Nov 6 | Ali Ghodsi | Lecturer | |||
Nov 6 | Ali Ghodsi | Lecturer | |||
Nov 6 | Anthony Caterini | 56 | Human-level control through deep reinforcement learning | Paper | Summary |
Nov 6 | Sean Aubin | Learning Hierarchical Features for Scene Labeling | Paper | Summary | |
Nov 13 | Mike Hynes | 12 | Speech recognition with deep recurrent neural networks | Paper | Summary |
Nov 13 | Tim Tse | . From machine learning to machine reasoning. Mach. Learn. | Paper | ||
Nov 13 | Maysum Panju | Neural machine translation by jointly learning to align and translate | Paper | ||
Nov 13 | Abdullah Rashwan | Deep neural networks for acoustic modeling in speech recognition. | paper | ||
Nov 20 | Valerie Platsko | Natural language processing (almost) from scratch. | Paper | ||
Nov 20 | Brent Komer | Show, Attend and Tell: Neural Image Caption Generation with Visual Attention | Paper | Summary | |
Nov 20 | Luyao Ruan | Dropout: A Simple Way to Prevent Neural Networks from Overfitting | Paper | ||
Nov 20 | Ali Mahdipour | The human splicing code reveals new insights into the genetic determinants of disease | Paper | ||
Nov 27 | Mahmood Gohari | Deep Neural Nets as a Method for Quantitative Structure–Activity Relationships | Paper | ||
Nov 27 | Derek Latremouille | The Wake-Sleep Algorithm for Unsupervised Neural Networks | Paper | ||
Nov 27 | Xinran Liu | ImageNet Classification with Deep Convolutional Neural Networks | Paper | Summary | |
Nov 27 | Ali Sarhadi | Deep Neural Nets as a Method for Quantitative Structure−Activity Relationships | |||
Dec 4 | Chris Choi | On the difficulty of training recurrent neural networks | Paper | Summary | |
Dec 4 | Fatemeh Karimi | MULTIPLE OBJECT RECOGNITION WITH VISUAL ATTENTION | Paper | ||
Dec 4 | Jan Gosmann | A fast learning algorithm for deep belief nets | Paper | Summary | |
Dec 4 | Dylan Drover | Towards AI-complete question answering: a set of prerequisite toy tasks | Paper |
Set B
Name | Paper number | Title | Link to the paper | Link to the summary |
Anthony Caterini | 15 | The Manifold Tangent Classifier | Paper | |
Jan Gosmann | Neural Turing machines | Paper | ||
Brent Komer | Scene Parsing with Multiscale Feature Learning, Purity Trees, and Optimal Covers | Paper | ||
Sean Aubin | Semi-Supervised Learning with Deep Generative Models | Paper | ||
Peter Blouw | Generating text with recurrent neural networks | Paper |