proof: Difference between revisions
(Created page with "To prove <math>\lambda_{\max}(\sum_{j \in I_k \cup \{i\}} a_ja_j^T) \geq \lambda_{\max}(\sum_{j \in I_k} a_ja_j^T) + (x_k^Ta_i)^2</math> we begin by finding the subgradient of th...") |
|
(No difference)
|
Latest revision as of 08:45, 30 August 2017
To prove [math]\displaystyle{ \lambda_{\max}(\sum_{j \in I_k \cup \{i\}} a_ja_j^T) \geq \lambda_{\max}(\sum_{j \in I_k} a_ja_j^T) + (x_k^Ta_i)^2 }[/math] we begin by finding the subgradient of the function [math]\displaystyle{ \lambda_{\max}(\cdot) }[/math] at the matrix [math]\displaystyle{ X \in S_n }[/math]. To do this we must first define the subgradient.
Definition:
A matrix [math]\displaystyle{ V \in R^{n \times n} }[/math] is a subgradiant of a convex function [math]\displaystyle{ f: R^{n\times n} \rightarrow R }[/math] at [math]\displaystyle{ X }[/math] if
where [math]\displaystyle{ \left\langle \cdot \right\rangle }[/math] is the inner product.
The function we are interested in is [math]\displaystyle{ \lambda_{\max}(\cdot) }[/math]. In order to define the subgradiant of this function we must first ensure it is convex. If [math]\displaystyle{ X \in S_n }[/math] then
Thus [math]\displaystyle{ \,\lambda_{\max}(X) }[/math] is the maximum of a collection of linear functions which implies that [math]\displaystyle{ \lambda_{\max}(\cdot) }[/math] is a convex function.
So, according to our definition of subgradiant we are looking for a matrix [math]\displaystyle{ \,V }[/math] such that
Since the trace defines an inner product on the space of symmetric matrices we can rewrite this problem as
Suppose [math]\displaystyle{ \,q \in R^n }[/math] is the eigenvector of [math]\displaystyle{ \,X }[/math] associated with the largest eigenvalue and [math]\displaystyle{ \,\|q\|_2 = 1 }[/math]. Since [math]\displaystyle{ \lambda_{\max}(Y) \geq \textrm{trace}(Yqq^T) }[/math] we have
Thus the subgradient is [math]\displaystyle{ \,V = qq^T }[/math] where [math]\displaystyle{ q \in R^n }[/math] is the eigenvector of [math]\displaystyle{ \,X }[/math] associated with the largest eigenvalue and [math]\displaystyle{ \|q\|_2 = 1 }[/math].
Now if we let [math]\displaystyle{ X = \sum_{j \in I_k} a_ja_j^T }[/math] and [math]\displaystyle{ Y = \sum_{j \in I_k \cup \{i\}} a_ja_j^T }[/math] and [math]\displaystyle{ \,x_k }[/math] be the eigenvector of [math]\displaystyle{ \sum_{j \in I_k} a_ja_j^T }[/math] associated with the largest eigenvalue then we have
Thus, [math]\displaystyle{ \lambda_{\max}(\sum_{j \in I_k \cup \{i\}} a_ja_j^T) \geq \lambda_{\max}(\sum_{j \in I_k} a_ja_j^T) + (x_k^Ta_i)^2 }[/math].