Difference between revisions of "stat940F21"

From statwiki
Jump to: navigation, search
(Paper presentation)
Line 44: Line 44:
 
|Week of Nov 25 || Yuliang Shi  || || Small-gan: Speeding up gan training using core-sets || [http://proceedings.mlr.press/v119/sinha20b/sinha20b.pdf Paper]  || [https://uofwaterloo-my.sharepoint.com/:v:/g/personal/y323shi_uwaterloo_ca/EbfkKXoQamVMgSdQ8eCiQuYBoSg8kGBkF89qd47H2EjxlQ?e=GAK5kB Presentation]
 
|Week of Nov 25 || Yuliang Shi  || || Small-gan: Speeding up gan training using core-sets || [http://proceedings.mlr.press/v119/sinha20b/sinha20b.pdf Paper]  || [https://uofwaterloo-my.sharepoint.com/:v:/g/personal/y323shi_uwaterloo_ca/EbfkKXoQamVMgSdQ8eCiQuYBoSg8kGBkF89qd47H2EjxlQ?e=GAK5kB Presentation]
 
|-
 
|-
|Week of Nov 25 || Varnan Sarangian  || || Self-training For Few-shot Transfer Across Extreme Task Differences || [https://openreview.net/pdf?id=O3Y56aqpChA] ||
+
|Week of Nov 25 || Varnan Sarangian  || || Self-training For Few-shot Transfer Across Extreme Task Differences || [https://openreview.net/pdf?id=O3Y56aqpChA] || [https://youtu.be/a6Dh4JQfJPQ]
 
|-
 
|-
 
|Week of Nov 25 || Alice Leung  || ||ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators ||  [https://openreview.net/pdf?id=r1xMH1BtvB Paper]|| [https://youtu.be/mji9nBiwoU8 Presentation]  ||
 
|Week of Nov 25 || Alice Leung  || ||ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators ||  [https://openreview.net/pdf?id=r1xMH1BtvB Paper]|| [https://youtu.be/mji9nBiwoU8 Presentation]  ||

Revision as of 00:51, 27 November 2021

Project Proposal

Paper presentation

Date Name Paper number Title Link to the paper Link to the video
Week of Nov 8 Abhinav Chanana (Example) 1 AUGMIX: A Simple Data Procession method to Improve Robustness And Uncertainity Paper Presentation
Week of Nov 11
Week of Nov 11 Benyamin Jamialahmad Perceiver: General Perception with Iterative Attention [1] [2]
Week of Nov 11
Week of Nov 11
Week of Nov 11
Week of Nov 11
Week of Nov 18 Veronica Salm StructBERT: Incorporating Language Structures Into Pre-Training for Deep Language Understanding Paper Presentation
Week of Nov 18 Youssef Fathi NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis Paper [3]
Week of Nov 18 Wei Liang Deep Stable Learning for Out-Of-Distribution Generalization (Received by CVPR2021) [4] [5]
Week of Nov 18 Taj Jones-McCormick Watch out! Motion is Blurring the Vision of Your Deep Neural Networks https://papers.nips.cc/paper/2020/file/0a73de68f10e15626eb98701ecf03adb-Paper.pdf [6]
Week of Nov 25 Muhammad Maruf Sazed An unsupervised deep learning approach for real-world image denoising https://openreview.net/pdf?id=tIjRAiFmU3y
Week of Nov 25 Yuxiang Huang Reliability Does Matter: An End-to-EndWeakly Supervised Semantic Segmentation Approach Publication
Week of Nov 25 Yuliang Shi Small-gan: Speeding up gan training using core-sets Paper Presentation
Week of Nov 25 Varnan Sarangian Self-training For Few-shot Transfer Across Extreme Task Differences [7] [8]
Week of Nov 25 Alice Leung ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators Paper Presentation
Week of Nov 25 Maryam Yalsavar Knowledge Extraction with No Observable Data [9] [10]
Week of Nov 25 Shervin Hakimi What Do Neural Networks Learn When Trained With Random Labels? [11]
Week of Nov 25 Islam Nasr Deep Learning Approaches for Forecasting Strawberry Yields and Prices Using Satellite Images and Station-Based Soil Parameters [12] [13]
Week of Nov 25 Jared Feng The Autoencoding Variational Autoencoder https://nips.cc/virtual/2020/public/poster_ac10ff1941c540cd87c107330996f4f6.html
Week of Nov 25 Mina Kebriaee Synthesizer: Rethinking Self-Attention for Transformer Models [14] [15]
Week of Nov 25 Mehrshad Sadria scGen predicts single-cell perturbation responses https://www.nature.com/articles/s41592-019-0494-8
Week of Nov 25 Xuanzhi Huang