stat341f11: Difference between revisions

From statwiki
Jump to navigation Jump to search
(Undo revision 11555 by Yj2xu (talk))
Line 3: Line 3:
==Sampling - Sept 20, 2011==
==Sampling - Sept 20, 2011==


From <math>x ~ f(x)</math> sample <math>x_{1}, x_{2}, ..., x_{1000}</math>
From <math>x \sim~ f(x)</math> sample <math>\,x_{1}, x_{2}, ..., x_{1000}</math>


===Sample from uniform distribution.===
===Sample from uniform distribution.===
Computers can't generate random numbers as they are deterministic but can produce pseudo random numbers.
Computers can't generate random numbers as they are deterministic but they can produce pseudo random numbers.


===Multiplicative Congruential===
===Multiplicative Congruential===
Line 45: Line 45:
Take <math>U \sim~ \mathrm{Unif}[0, 1]</math> and let <math>x=F^{-1}(u)</math>. Then x has distribution function <math>F()</math>, where <math>F(x)=P(X<=x)</math>.
Take <math>U \sim~ \mathrm{Unif}[0, 1]</math> and let <math>x=F^{-1}(u)</math>. Then x has distribution function <math>F()</math>, where <math>F(x)=P(X<=x)</math>.


Let <math>F^{-1}()</math> denote the inverse of <math>F()</math> therefore <math>F(x)=u \implies x=F^{-1}(u)</math>
Let <math>F^{-1}()</math> denote the inverse of <math>F()</math>. Therefore <math>F(x)=u \implies x=F^{-1}(u)</math>


Take the the exponential distribution for example
Take the the exponential distribution for example
Line 57: Line 57:
:<math>\,x=\frac{ln(1-y)}{-\lambda}</math>
:<math>\,x=\frac{ln(1-y)}{-\lambda}</math>
:<math>\,F^{-1}(x)=\frac{-ln(1-x)}{\lambda}</math>
:<math>\,F^{-1}(x)=\frac{-ln(1-x)}{\lambda}</math>


Therefore, to get a exponential distribution from a uniform distribution takes 2 steps.
Therefore, to get a exponential distribution from a uniform distribution takes 2 steps.
Line 72: Line 70:


====Discrete Case====
====Discrete Case====
This same technique can be applied to the discrete case. To generate a discrete random variable <math>\,x</math> that has probability mass function <math>\,P(x=x_i)=p_i </math> where <math>\,x_0<x_1<x_2...</math> and <math>\,\sum p_i=1</math>, use the following 2 steps.
This same technique can be applied to the discrete case. Generate a discrete random variable <math>\,x</math> that has probability mass function <math>\,p(x=x_i)=p_i </math> where <math>\,x_0<x_1<x_2...</math> and <math>\,\sum p_i=1</math>
 
*Step 1 Draw <math>u \sim~ \mathrm{Unif}[0, 1]</math>
*Step 1. Draw <math>u \sim~ \mathrm{Unif}[0, 1]</math>
*Step 2 <math>\,x=x_i</math> if <math>\,F(x_{i-1})<u<=F(x_i)</math>
*Step 2. Set <math>\,x=x_i</math> if <math>\,F(x_{i-1})<u \le F(x_i)</math>

Revision as of 16:20, 22 September 2011

Editor Sign Up

Sampling - Sept 20, 2011

From [math]\displaystyle{ x \sim~ f(x) }[/math] sample [math]\displaystyle{ \,x_{1}, x_{2}, ..., x_{1000} }[/math]

Sample from uniform distribution.

Computers can't generate random numbers as they are deterministic but they can produce pseudo random numbers.

Multiplicative Congruential

  • involves three integers
  • a, b, m
  • an initial value x0, we call the seed
  • a sequence of integers is defined as
[math]\displaystyle{ x_{k+1} = (ax_{k} + b) \mod{m} }[/math]

Example: a=13 b=0 m=31 x0=1 creates a uniform histogram

Matlab code for generating 1000 randoms using the multiplicative congruential method:

a=13;
b=0;
m=31;
x=1;

for ii = 1:1000
    x(ii+1) = mod(a*x(ii)+b,m);
end

Facts about this algorithm:

  • the first 30 terms in the sequence are a permutation of integers from 1 to 30 then the sequence repeats itself
  • values are between 0 and m-1
  • if you divide it by m-1 the result is numbers uniformly distributed in the interval of 0 and 1
  • in matlab the values choosen are a=75 b=0 m=231-1 due to a 1988 paper showing they are optimal

Inverse Transform Method

[math]\displaystyle{ P(a\lt x\lt b)=\int_a^{b} f(x) dx }[/math]
[math]\displaystyle{ cdf=F(x)=P(X\lt =x)=\int_{-\infty}^{x} f(x) dx }[/math]

Assume cdf & cdf -1 can be found

Theorem:

Take [math]\displaystyle{ U \sim~ \mathrm{Unif}[0, 1] }[/math] and let [math]\displaystyle{ x=F^{-1}(u) }[/math]. Then x has distribution function [math]\displaystyle{ F() }[/math], where [math]\displaystyle{ F(x)=P(X\lt =x) }[/math].

Let [math]\displaystyle{ F^{-1}() }[/math] denote the inverse of [math]\displaystyle{ F() }[/math]. Therefore [math]\displaystyle{ F(x)=u \implies x=F^{-1}(u) }[/math]

Take the the exponential distribution for example

[math]\displaystyle{ \,f(x)={\lambda}e^{-{\lambda}x} }[/math]
[math]\displaystyle{ \,F(x)=\int_0^x {\lambda}e^{-{\lambda}u} du }[/math]
[math]\displaystyle{ \,F(x)=1-e^{-{\lambda}x} }[/math]

Let: [math]\displaystyle{ \,F(x)=y }[/math]

[math]\displaystyle{ \,y=1-e^{-{\lambda}x} }[/math]
[math]\displaystyle{ \,ln(1-y)={-{\lambda}x} }[/math]
[math]\displaystyle{ \,x=\frac{ln(1-y)}{-\lambda} }[/math]
[math]\displaystyle{ \,F^{-1}(x)=\frac{-ln(1-x)}{\lambda} }[/math]

Therefore, to get a exponential distribution from a uniform distribution takes 2 steps.

  • Step 1. Draw [math]\displaystyle{ U \sim~ \mathrm{Unif}[0, 1] }[/math]
  • Step 2. [math]\displaystyle{ x=\frac{-ln(1-F(u))}{\lambda} }[/math]

Now we just have to show the generated points have a cdf of F(x)

[math]\displaystyle{ \,p(F^{-1}(u)\lt =x) }[/math]
[math]\displaystyle{ \,p(F(F^{-1}(u))\lt =F(x)) }[/math]
[math]\displaystyle{ \,p(u\lt =F(x)) }[/math]
[math]\displaystyle{ \,=F(x) }[/math]

QED

Discrete Case

This same technique can be applied to the discrete case. Generate a discrete random variable [math]\displaystyle{ \,x }[/math] that has probability mass function [math]\displaystyle{ \,p(x=x_i)=p_i }[/math] where [math]\displaystyle{ \,x_0\lt x_1\lt x_2... }[/math] and [math]\displaystyle{ \,\sum p_i=1 }[/math]

  • Step 1 Draw [math]\displaystyle{ u \sim~ \mathrm{Unif}[0, 1] }[/math]
  • Step 2 [math]\displaystyle{ \,x=x_i }[/math] if [math]\displaystyle{ \,F(x_{i-1})\lt u\lt =F(x_i) }[/math]