stat341f11: Difference between revisions

From statwiki
Jump to navigation Jump to search
(First Draft)
No edit summary
Line 26: Line 26:
Assume cdf & cdf <sup>-1</sup> can be found
Assume cdf & cdf <sup>-1</sup> can be found


Theorem:
====Theorem:====
Take u~Uniform[0,1] and let <math>x=F^{-1}(u)</math>. Then x has distribution function <math>F()</math>, where <math>F(x)=P(X<=x)</math>
Take <math>U \sim~ \mathrm{Unif}[0, 1]</math> and let <math>x=F^{-1}(u)</math>. Then x has distribution function <math>F()</math>, where <math>F(x)=P(X<=x)</math>.
 
Let <math>F^{-1}()</math> denote the inverse of <math>F()</math> therefore <math>F(x)=u \implies x=F^{-1}(u)</math>


:Let <math>F^{-1}()</math> denote the inverse of <math>F()</math>
ie <math>F(x)=u \implies x=F^{-1}(u)</math>
Take the the exponential distribution for example
Take the the exponential distribution for example
:<math>f(x)={\lambda}e^{-{\lambda}x}</math>
:<math>\,f(x)={\lambda}e^{-{\lambda}x}</math>
:<math>F(x)=\int_0^x {\lambda}e^{-{\lambda}u} du</math>
:<math>\,F(x)=\int_0^x {\lambda}e^{-{\lambda}u} du</math>
:<math>F(x)=1-{\lambda}e^{-{\lambda}x}</math>
:<math>\,F(x)=1-{\lambda}e^{-{\lambda}x}</math>
:<math>{\lambda}e^{-{\lambda}x}=1-F(x)</math>
:<math>\,{\lambda}e^{-{\lambda}x}=1-F(x)</math>
:<math>{-{\lambda}x}=ln(1-F(x))</math>
:<math>\,{-{\lambda}x}=ln(1-F(x))</math>
:<math>x=\frac{ln(1-F(x))}{-\lambda}</math>
:<math>\,x=\frac{ln(1-F(x))}{-\lambda}</math>
:<math>F^{-1}(x)=\frac{-ln(1-F(x))}{\lambda}</math>
:<math>\,F^{-1}(x)=\frac{-ln(1-F(x))}{\lambda}</math>
 
 
Therefore, to get a exponential distribution from a uniform distribution takes 2 steps.
*Step 1. Draw <math>U \sim~ \mathrm{Unif}[0, 1]</math>
*Step 2. <math>x=\frac{-ln(1-F(u))}{\lambda}</math>


1. Draw u~Uniform[0,1]
Now we just have to show the generated points have a cdf of F(x)
2. <math>x=\frac{-ln(1-F(u))}{\lambda}
:<math>\,p(F^{-1}(u)<=x)</math>
:<math>\,p(F(F^{-1}(u))<=F(x))</math>
:<math>\,p(u<=F(x))</math>
:<math>\,=F(x)</math>
QED


<math>p(F^{-1}(u)<=x)</math>
====Discrete Case====
<math>p(F(F^{-1}(u))<=F(x))</math>
<math>p(u<=F(x))</math>
<math>=F(x)</math>
=> data points generated have cdf F(x)
This same technique can be applied to the discrete case
This same technique can be applied to the discrete case
Generate a discrete random variable x that has probability mass function <math>p(x=x_i)=P_i </math> where <math>x_0<x_1<x_2... and \sum p_i=1</math>
Generate a discrete random variable x that has probability mass function <math>\,p(x=x_i)=P_i </math> where <math>\,x_0<x_1<x_2...</math> and <math>\,\sum p_i=1</math>
1 u~uniform[0,1]
*Step 1 Draw <math>U \sim~ \mathrm{Unif}[0, 1]</math>
2 x=x<sub>i</sub> if <math>F(x_{i-1})<u<=F(x_i)</math
*Step 2 <math>\,x=x_i</math> if <math>\,F(x_{i-1})<u<=F(x_i)</math>

Revision as of 20:16, 21 September 2011

Editor Sign Up

Sampling - Sept 20, 2011

From [math]\displaystyle{ x ~ f(x) }[/math] sample [math]\displaystyle{ x_{1}, x_{2}, ..., x_{1000} }[/math]

Sample from uniform distribution.

Computers cant generate random numbers as they are deterministic but can produce pseudo random numbers.

Multiplicative Congruential

  • involves three integers
  • a, b, m
  • an initial value x0, we call the seed
  • a sequence of integers is defined as
[math]\displaystyle{ x_{k+1} = (ax_{k} + b) \mod{m} }[/math]

example: a=13 b=0 m=31 x0=1 creates a uniform histogram

  • the first 30 terms in the sequence are a permutation of integers from 1 to 30 then the sequence repeats itself
  • values are between 0 and m-1
  • if you divide it by m-1 the result is numbers uniformly distributed in the interval of 0 and 1
  • in matlab the values choosen are a=75 b=0 m=231-1 due to a 1988 paper showing they are optimal

Inverse Transform Method

[math]\displaystyle{ P(a\lt x\lt b)=\int_a^{b} f(x) dx }[/math]
[math]\displaystyle{ cdf=F(x)=P(X\lt =x)=\int_{-\infty}^{x} f(x) dx }[/math]

Assume cdf & cdf -1 can be found

Theorem:

Take [math]\displaystyle{ U \sim~ \mathrm{Unif}[0, 1] }[/math] and let [math]\displaystyle{ x=F^{-1}(u) }[/math]. Then x has distribution function [math]\displaystyle{ F() }[/math], where [math]\displaystyle{ F(x)=P(X\lt =x) }[/math].

Let [math]\displaystyle{ F^{-1}() }[/math] denote the inverse of [math]\displaystyle{ F() }[/math] therefore [math]\displaystyle{ F(x)=u \implies x=F^{-1}(u) }[/math]

Take the the exponential distribution for example

[math]\displaystyle{ \,f(x)={\lambda}e^{-{\lambda}x} }[/math]
[math]\displaystyle{ \,F(x)=\int_0^x {\lambda}e^{-{\lambda}u} du }[/math]
[math]\displaystyle{ \,F(x)=1-{\lambda}e^{-{\lambda}x} }[/math]
[math]\displaystyle{ \,{\lambda}e^{-{\lambda}x}=1-F(x) }[/math]
[math]\displaystyle{ \,{-{\lambda}x}=ln(1-F(x)) }[/math]
[math]\displaystyle{ \,x=\frac{ln(1-F(x))}{-\lambda} }[/math]
[math]\displaystyle{ \,F^{-1}(x)=\frac{-ln(1-F(x))}{\lambda} }[/math]


Therefore, to get a exponential distribution from a uniform distribution takes 2 steps.

  • Step 1. Draw [math]\displaystyle{ U \sim~ \mathrm{Unif}[0, 1] }[/math]
  • Step 2. [math]\displaystyle{ x=\frac{-ln(1-F(u))}{\lambda} }[/math]

Now we just have to show the generated points have a cdf of F(x)

[math]\displaystyle{ \,p(F^{-1}(u)\lt =x) }[/math]
[math]\displaystyle{ \,p(F(F^{-1}(u))\lt =F(x)) }[/math]
[math]\displaystyle{ \,p(u\lt =F(x)) }[/math]
[math]\displaystyle{ \,=F(x) }[/math]

QED

Discrete Case

This same technique can be applied to the discrete case Generate a discrete random variable x that has probability mass function [math]\displaystyle{ \,p(x=x_i)=P_i }[/math] where [math]\displaystyle{ \,x_0\lt x_1\lt x_2... }[/math] and [math]\displaystyle{ \,\sum p_i=1 }[/math]

  • Step 1 Draw [math]\displaystyle{ U \sim~ \mathrm{Unif}[0, 1] }[/math]
  • Step 2 [math]\displaystyle{ \,x=x_i }[/math] if [math]\displaystyle{ \,F(x_{i-1})\lt u\lt =F(x_i) }[/math]