proof of Lemma 1

From statwiki
Revision as of 09:45, 30 August 2017 by Conversion script (talk | contribs) (Conversion script moved page Proof of Lemma 1 to proof of Lemma 1: Converting page titles to lowercase)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

We seek [math]\displaystyle{ \textbf{u} }[/math] that minimizes

[math]\displaystyle{ -\textbf{u}^T\textbf{a} \; \textrm{ subject } \; \textrm{ to } \; \|\textbf{u}\|^2_2 \leq 1, \; \|\textbf{u}\|_1 \leq c_1 }[/math]

First we rewrite the criterion using Lagrange multipliers

[math]\displaystyle{ -\textbf{u}^T\textbf{a} + \lambda\|\textbf{u}\|^2_2 + \Delta\|\textbf{u}\|_1, }[/math]

and we differentiate, set the derivative to 0 and solve for [math]\displaystyle{ \textbf{u} }[/math]:

[math]\displaystyle{ 0 = -\textbf{a} + 2\lambda\textbf{u} + \Delta\Gamma, }[/math]



where [math]\displaystyle{ \ \Gamma_i = \textrm{sgn}(u_i) }[/math] if [math]\displaystyle{ u_i \neq 0 }[/math]; otherwise [math]\displaystyle{ \Gamma_i \in [-1, 1] }[/math]. The Karush-Kuhn-Tucker conditions for optimality consist of the previous equation, along with [math]\displaystyle{ \lambda(\|\textbf{u}\|^2_2 - 1) = 0 }[/math] and [math]\displaystyle{ \Delta(\|\textbf{u}\|_1 - c_1) = 0 }[/math]. Now if [math]\displaystyle{ \ \lambda \gt 0 }[/math], we have

[math]\displaystyle{ \textbf{u} = \frac{S(\textbf{a},\Delta)}{2\lambda} }[/math]


In general, we have either [math]\displaystyle{ \ \lambda = 0 }[/math] (if this results in a feasible solution) or [math]\displaystyle{ \ \lambda }[/math] must be chosen such that [math]\displaystyle{ \|\textbf{u}\|^2_2 = 1 }[/math]. So we see that

[math]\displaystyle{ \textbf{u} = \frac{S(\textbf{a},\Delta)}{\|S(\textbf{a},\Delta) \|_2} }[/math]


Again by the Karush-Kuhn-Tucker conditions, either [math]\displaystyle{ \ \Delta = 0 }[/math] (if this results in a feasible solution) or [math]\displaystyle{ \ \Delta }[/math] must be chosen such that [math]\displaystyle{ \|\textbf{u}\|_1 = c_1 }[/math]. So, [math]\displaystyle{ \ \Delta = 0 }[/math] if this results in [math]\displaystyle{ \|\textbf{u}\|_1 \leq c_1 }[/math]; otherwise we choose [math]\displaystyle{ \ \Delta }[/math] such that [math]\displaystyle{ \|\textbf{u}\|_1 = c_1 }[/math]. This completes the proof of the Lemma.

The above proof is proof of Lemma 2.2 in <ref name="WTH2009">Daniela M. Witten, Robert Tibshirani, and Trevor Hastie. (2009) "A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis". Biostatistics, 10(3):515–534.</ref>

References

<references />