proof

From statwiki
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

To prove [math]\displaystyle{ \lambda_{\max}(\sum_{j \in I_k \cup \{i\}} a_ja_j^T) \geq \lambda_{\max}(\sum_{j \in I_k} a_ja_j^T) + (x_k^Ta_i)^2 }[/math] we begin by finding the subgradient of the function [math]\displaystyle{ \lambda_{\max}(\cdot) }[/math] at the matrix [math]\displaystyle{ X \in S_n }[/math]. To do this we must first define the subgradient.

Definition: A matrix [math]\displaystyle{ V \in R^{n \times n} }[/math] is a subgradiant of a convex function [math]\displaystyle{ f: R^{n\times n} \rightarrow R }[/math] at [math]\displaystyle{ X }[/math] if

[math]\displaystyle{ f(Y) \geq f(X) + \left\langle V, Y-X \right\rangle \; \forall \; Y \in \textrm{dom}(f) }[/math]

where [math]\displaystyle{ \left\langle \cdot \right\rangle }[/math] is the inner product.

The function we are interested in is [math]\displaystyle{ \lambda_{\max}(\cdot) }[/math]. In order to define the subgradiant of this function we must first ensure it is convex. If [math]\displaystyle{ X \in S_n }[/math] then

[math]\displaystyle{ \lambda_{\max}(X) = \max_{Y\succeq 0, \textrm{trace}(Y) = 1} \textrm{trace}(YX). }[/math]

Thus [math]\displaystyle{ \,\lambda_{\max}(X) }[/math] is the maximum of a collection of linear functions which implies that [math]\displaystyle{ \lambda_{\max}(\cdot) }[/math] is a convex function.

So, according to our definition of subgradiant we are looking for a matrix [math]\displaystyle{ \,V }[/math] such that

[math]\displaystyle{ \lambda_{\max}(Y) \geq \lambda_{\max}(X) + \left\langle V, Y-X \right\rangle. }[/math]

Since the trace defines an inner product on the space of symmetric matrices we can rewrite this problem as

[math]\displaystyle{ \lambda_{\max}(Y) \geq \lambda_{\max}(X) + \textrm{trace}(V(Y-X)). }[/math]



Suppose [math]\displaystyle{ \,q \in R^n }[/math] is the eigenvector of [math]\displaystyle{ \,X }[/math] associated with the largest eigenvalue and [math]\displaystyle{ \,\|q\|_2 = 1 }[/math]. Since [math]\displaystyle{ \lambda_{\max}(Y) \geq \textrm{trace}(Yqq^T) }[/math] we have

[math]\displaystyle{ \begin{align} \lambda_{\max}(Y) & \geq \textrm{trace}(Yqq^T) = \textrm{trace}(Xqq^T) + \textrm{trace}((Y-X)qq^T) \\ &= \lambda_{\max}(X) + \textrm{trace}({(Y-X)qq^T})\\ &= \lambda_{\max}(X) + \textrm{trace}(q^T(Y-X)q) \end{align} }[/math]


Thus the subgradient is [math]\displaystyle{ \,V = qq^T }[/math] where [math]\displaystyle{ q \in R^n }[/math] is the eigenvector of [math]\displaystyle{ \,X }[/math] associated with the largest eigenvalue and [math]\displaystyle{ \|q\|_2 = 1 }[/math].

Now if we let [math]\displaystyle{ X = \sum_{j \in I_k} a_ja_j^T }[/math] and [math]\displaystyle{ Y = \sum_{j \in I_k \cup \{i\}} a_ja_j^T }[/math] and [math]\displaystyle{ \,x_k }[/math] be the eigenvector of [math]\displaystyle{ \sum_{j \in I_k} a_ja_j^T }[/math] associated with the largest eigenvalue then we have

[math]\displaystyle{ \begin{align} \lambda_{\max}(\sum_{j \in I_k \cup \{i\}} a_ja_j^T) & \geq \lambda_{\max}(\sum_{j \in I_k} a_ja_j^T) + \textrm{trace}(x_i^T(\sum_{j \in I_k \cup \{i\}} a_ja_j^T-\sum_{j \in I_k \cup \{i\}} a_ja_j^T)x_i) \\ & = \lambda_{\max}(\sum_{j \in I_k} a_ja_j^T) + \textrm{trace}(x_k^T(a_ia_i^T)x_i) \\ & = \lambda_{\max}(\sum_{j \in I_k} a_ja_j^T) + (x_k^Ta_i)^2 \end{align} }[/math]

Thus, [math]\displaystyle{ \lambda_{\max}(\sum_{j \in I_k \cup \{i\}} a_ja_j^T) \geq \lambda_{\max}(\sum_{j \in I_k} a_ja_j^T) + (x_k^Ta_i)^2 }[/math].