measuring Statistical Dependence with Hilbert-Schmidt Norm: Difference between revisions

From statwiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
An independence criterion based on covariance operators in reproducing kernel Hilbert spaces
"Hilbert-Schmist Norm of the Cross-Covariance operator" is proposed as an independence criterion in reproducing kernel Hilbert spaces
(RKHSs) is proposed. Also, an empirical estimate of this measure is given which is refereed to as Hilbert-Schmidt Independence
(RKHSs). The measure is refereed to as Hilbert-Schmidt Independence
Criterion, or HSIC. This criterion can be used as dependence measure in practical application such as independent Component Analysis (ICA), Maximum Variance Unfolding (MVU), feature extraction, feature selection, ... .
Criterion, or HSIC. An empirical estimate of this measure is introduced which may be well used in many practical application such as independent Component Analysis (ICA), Maximum Variance Unfolding (MVU), feature extraction, feature selection, ... .
===RKHS Theory ===
===RKHS Theory ===
Let <math>\mathcal{F}</math> be a Hilbert space from <math>\mathcal{X}</math> to <math>\mathbb{R}</math>. We assume <math>\mathcal{F}</math> is a Reproducing Kernel Hilbert Space,i.e., for all <math>x\in \mathcal{X}</math>, the corresponding Dirac evaluation operator <math>\delta_x:\mathcal{F} \rightarrow \mathbb{R}</math> is a bounded (or equivalently continuous) linear functional. We denote the kernel of this operator by <math>k(x,x')=\langle \phi(x)\phi(x') \rangle_{\mathcal{F}}</math> where <math>k:\mathcal{X}\rightarrow \mathbb{R} </math> and <math>\phi </math> is the feature map of <math>\mathcal{F}</math>. Similarly, we consider another RKHS named <math>\mathcal{G}</math> with Domain <math>\mathcal{Y}</math>, kernel <math>l(\cdot,\cdot)</math> and feature map <math>\psi </math>. We assume both <math>\mathcal{F}</math> and <math>\mathcal{G}</math> are separable, i.e., they have a complete orthogonal basis.
Let <math>\mathcal{F}</math> be a Hilbert space from <math>\mathcal{X}</math> to <math>\mathbb{R}</math>. We assume <math>\mathcal{F}</math> is a Reproducing Kernel Hilbert Space,i.e., for all <math>x\in \mathcal{X}</math>, the corresponding Dirac evaluation operator <math>\delta_x:\mathcal{F} \rightarrow \mathbb{R}</math> is a bounded (or equivalently continuous) linear functional. We denote the kernel of this operator by <math>k(x,x')=\langle \phi(x)\phi(x') \rangle_{\mathcal{F}}</math> where <math>k:\mathcal{X}\times \mathcal{X}\rightarrow \mathbb{R} </math> is a positive definite function and <math>\phi </math> is the feature map of <math>\mathcal{F}</math>. Similarly, we consider another RKHS named <math>\mathcal{G}</math> with Domain <math>\mathcal{Y}</math>, kernel <math>l(\cdot,\cdot)</math> and feature map <math>\psi </math>. We assume both <math>\mathcal{F}</math> and <math>\mathcal{G}</math> are separable, i.e., they have a complete orthogonal basis.


==Hilbert-Schmidt Norm ==
==Hilbert-Schmidt Norm ==
Line 18: Line 18:
==Bias of Estimator==
==Bias of Estimator==
===Large Deviation Bound===
===Large Deviation Bound===
==Deviation Bound for U0statistics==
==Deviation Bound for U-statistics==
==Bound on Empirical HSIC==
==Bound on Empirical HSIC==
===Independence Test using HSIC===
===Independence Test using HSIC===
===Experimental Results===
===Experimental Results===

Revision as of 12:02, 24 June 2009

"Hilbert-Schmist Norm of the Cross-Covariance operator" is proposed as an independence criterion in reproducing kernel Hilbert spaces (RKHSs). The measure is refereed to as Hilbert-Schmidt Independence Criterion, or HSIC. An empirical estimate of this measure is introduced which may be well used in many practical application such as independent Component Analysis (ICA), Maximum Variance Unfolding (MVU), feature extraction, feature selection, ... .

RKHS Theory

Let [math]\displaystyle{ \mathcal{F} }[/math] be a Hilbert space from [math]\displaystyle{ \mathcal{X} }[/math] to [math]\displaystyle{ \mathbb{R} }[/math]. We assume [math]\displaystyle{ \mathcal{F} }[/math] is a Reproducing Kernel Hilbert Space,i.e., for all [math]\displaystyle{ x\in \mathcal{X} }[/math], the corresponding Dirac evaluation operator [math]\displaystyle{ \delta_x:\mathcal{F} \rightarrow \mathbb{R} }[/math] is a bounded (or equivalently continuous) linear functional. We denote the kernel of this operator by [math]\displaystyle{ k(x,x')=\langle \phi(x)\phi(x') \rangle_{\mathcal{F}} }[/math] where [math]\displaystyle{ k:\mathcal{X}\times \mathcal{X}\rightarrow \mathbb{R} }[/math] is a positive definite function and [math]\displaystyle{ \phi }[/math] is the feature map of [math]\displaystyle{ \mathcal{F} }[/math]. Similarly, we consider another RKHS named [math]\displaystyle{ \mathcal{G} }[/math] with Domain [math]\displaystyle{ \mathcal{Y} }[/math], kernel [math]\displaystyle{ l(\cdot,\cdot) }[/math] and feature map [math]\displaystyle{ \psi }[/math]. We assume both [math]\displaystyle{ \mathcal{F} }[/math] and [math]\displaystyle{ \mathcal{G} }[/math] are separable, i.e., they have a complete orthogonal basis.

Hilbert-Schmidt Norm

Hilbert-Schmidt Operator

Tensor Product Operator

Cross-Covariance Operator

Mean

Cross-covariance Operator

Hilbert-Schmidt Independence Criterion

Definition (HSIC)

HSIC in terms of kernels

Empirical Criterion

definition

Bias of Estimator

Large Deviation Bound

Deviation Bound for U-statistics

Bound on Empirical HSIC

Independence Test using HSIC

Experimental Results