a Direct Formulation For Sparse PCA Using Semidefinite Programming: Difference between revisions

From statwiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 53: Line 53:
<math>{X}\geq 0</math>
<math>{X}\geq 0</math>


The above formula can be extended to non-square cases. The sparse variance maximization problem can be written as followed:
The above formula can be extended to case of non-square matrices. The sparse variance maximization problem can be written as followed:


maximize  <math>u^{T}{A}v</math>
maximize  <math>u^{T}{A}v</math>
Line 59: Line 59:
subject to <math>\|u\|_{2}=\|v\|_{2}=1</math>,  
subject to <math>\|u\|_{2}=\|v\|_{2}=1</math>,  


<math>\textbf{Card}(u)\leq k_{1},\textbf{Card}(u)\leq k_{1}</math>,  
<math>\textbf{Card}(u)\leq k_{1},\textbf{Card}(v)\leq k_{2}</math>,  


Changing the constraint to the convex one, in the same as we did for square cases, the following formulas will be achieved:  
Changing the constraint to the convex one, in the same way as we did for square cases, the following formulas will be achieved:  


maximize  <math>\textbf{Tr}({A}^{T}{X}^{12})</math>
maximize  <math>\textbf{Tr}({A}^{T}{X}^{12})</math>

Revision as of 20:17, 12 November 2010

Introduction

Principle Component Analysis is a popular technique which finds a transformation from correlated variables to uncorrelated ones which correspond to the direction of maximal variance in the data. The Principal component can be representative of the whole data with minimum information loss. In sparse PCA, the embedded variables are linear combination of the input variables subject to the constraint that the number of non-zero elements in this combination is limited. Sparse PCA decomposition interpretation is facilitated since the number of non-zero elements are not all variables if the coordinate axes have a physical meaning. It is also helpful in expressing a space of a set of low-dimensional vectors with minimum loss of information.

Semidefinite programs<ref name="VB1996">L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM Review, 38 (1996), pp. 49– 95.</ref> are convex optimization. They optimize a linear function by constraining it to an affine combination of symmetric matrices which are positive semidefinite. Semidefinite programs can be solved in polynomial time by interior-point solvers like SEDUMI or SDPT3. Unfortunately, they are not viable and practical for high dimensional data sets.

This paper suggests a direct approach to convex formulation of the sparse PCA via semidefinite programming. Since interior-point solvers cannot handle large data sets, Nesterov’s smoothing technique <ref name='N2004'>Smoothing technique and its application in semidefinite optimization, CORE Discussion Paper No. 2004/73, (2004).</ref> is used efficiently to help solving large dimensional problems. First order methods require less memory which is an important issue in interior-point solvers. On the other hand, their convergence is slower but it is not a major concern in certain cases. So, the optimal first-order minimization algorithm is going to be applied for solving the optimization problem.

The content of the paper could be summarized as below:

First, they tried to maximize the variance projection by limiting the number of non-zero elements via semidefinite programming. Then, they show how this method could be used for decomposing a matrix in to limited number of variables. As their problem size is large and can not be solved by common techniques which are used for solving the convex optimization problems, they show that Nesterov's smoothing method <ref name="N2004"/> helps achieving the solution.

Semidefinite relaxation

Sparse variance maximization

A [math]\displaystyle{ \in \textbf{S}^n }[/math] is assumed to be a symmetric matrix and WLOG, A is a covariance matrix. [math]\displaystyle{ \textbf{S}^n }[/math] is the set of symmetric matrices of size [math]\displaystyle{ n }[/math]. we are going to maximize the variance of vector [math]\displaystyle{ x \in \textbf{R}^n }[/math] while it is sparse. [math]\displaystyle{ k }[/math] is an integer and [math]\displaystyle{ 1 \leq k \leq n }[/math].

maximize [math]\displaystyle{ x^{T}{A}x }[/math]

subject to [math]\displaystyle{ \|x\|_2=1 }[/math]

[math]\displaystyle{ \textbf{Card}(x)\leq k }[/math]

This problem is hard, because of the cardinality constraint. Therefore, we should look for a convex relaxation.

Semidefinite relaxation

Rewriting the above formulas, we will have:

maximize [math]\displaystyle{ \textbf{Tr}({A}{X}) }[/math]

subject to [math]\displaystyle{ \textbf{Tr}({X})=1 }[/math],

[math]\displaystyle{ \textbf{Card}({X})\leq k^2 }[/math],

[math]\displaystyle{ {X}\geq 0 }[/math]

[math]\displaystyle{ \textbf{Rank}({X})=1 }[/math]

where [math]\displaystyle{ X }[/math] is a matrix variable [math]\displaystyle{ X \in \textbf{S}^n }[/math].

[math]\displaystyle{ X }[/math] is a solution to the above problem and the last two constraints imply that [math]\displaystyle{ X=xx^T }[/math]. Finally, by replacing the only non-convex constraint, [math]\displaystyle{ \textbf{Card}({X})\leq k^2 }[/math], to a weaker but convex one, we come to a semidefinite relaxation of the sparse PCA for square matrices.

maximize [math]\displaystyle{ \textbf{Tr}({A}{X}) }[/math]

subject to [math]\displaystyle{ \textbf{Tr}({X})=1 }[/math],

[math]\displaystyle{ \textbf{1}^{T}|{X}|\textbf{1}\leq k }[/math],

[math]\displaystyle{ {X}\geq 0 }[/math]

The above formula can be extended to case of non-square matrices. The sparse variance maximization problem can be written as followed:

maximize [math]\displaystyle{ u^{T}{A}v }[/math]

subject to [math]\displaystyle{ \|u\|_{2}=\|v\|_{2}=1 }[/math],

[math]\displaystyle{ \textbf{Card}(u)\leq k_{1},\textbf{Card}(v)\leq k_{2} }[/math],

Changing the constraint to the convex one, in the same way as we did for square cases, the following formulas will be achieved:

maximize [math]\displaystyle{ \textbf{Tr}({A}^{T}{X}^{12}) }[/math]

subject to [math]\displaystyle{ {X}\leq0, \textbf{Tr}({X}^{ii})=1 }[/math],

[math]\displaystyle{ \textbf{1}^{T}|{X}^{ii}|\textbf{1}\leq k_{i}, i=1,2 }[/math],

[math]\displaystyle{ \textbf{1}^{T}|{X}^{12}|\textbf{1}\leq \sqrt{k_1k_2} }[/math]

Sparse decomposition

Here, we are going to apply our formula for obtaining component of sparse PCA. Given matrix [math]\displaystyle{ A_1 \in \textbf{S}^n }[/math], our goal is to decompose it to components which are sparse.

maximize [math]\displaystyle{ \textbf{Tr}({A}_1{X}) }[/math]

subject to [math]\displaystyle{ \textbf{Tr}({X})=1 }[/math],

[math]\displaystyle{ \textbf{1}^{T}|{X}|\textbf{1}\leq k }[/math],

[math]\displaystyle{ {X}\geq 0 }[/math]

[math]\displaystyle{ X_1 }[/math] will be truncated as below and the only first eigenvector [math]\displaystyle{ x_1 }[/math] which corresponds to the largest eigenvalue will be kept.

[math]\displaystyle{ {A}_2={A}_1-(x_{1}^{T}{A}_1x_1)x_1x_1^T }[/math]

And repeat the algorithm to obtain more components. But the issue is when should we stop?

When the values in [math]\displaystyle{ A_i }[/math] are all less than a constant [math]\displaystyle{ \rho }[/math], we must stop. [math]\displaystyle{ \rho }[/math] acn be interpreted as noise level and when the matrix can not be distinguished from noise, we will terminate the iterations.

Algorithm

SEDUMI and SDPT3 are used for small size problems of semidefinite programming. But for larger problems, those methods are not practical because it is impossible to store any second order information of size [math]\displaystyle{ n }[/math], which is necessary in interior-pointSDP solvers. So, the first order methods would be popular. These methods need a smaller size memory cost per iteration but their convergence time is [math]\displaystyle{ O(1/\epsilon) }[/math] while interior-point method will converge in [math]\displaystyle{ O(log(1/\epsilon)) }[/math]. Fortunately, convergence time is not important in our application.

Smoothing technique

There are two important issue for large scale semidefinite programming. One is the memory difficulty and for solving this problem we 'll look forward first-order techniques. The other one is smoothness. As [math]\displaystyle{ X\geq 0 }[/math] is not smooth, as a result the number of iteration using first-order methods to an accuracy of [math]\displaystyle{ \epsilon }[/math] is given by [math]\displaystyle{ O(1/\epsilon ^2) }[/math]. this bound is tight without any further information about the structure. since we have available information this complexity will be brought to [math]\displaystyle{ O(1/\epsilon) }[/math].

As we have in the previous sections the function is:

maximize [math]\displaystyle{ x^{T}{A}x }[/math]

subject to [math]\displaystyle{ \|x\|_2=1 }[/math]

[math]\displaystyle{ \textbf{Card}(x)\leq k }[/math]

We can replace the constraint and penalize the cardinality and solve:

maximize [math]\displaystyle{ x^{T}{A}x-\textbf{Card}^{2}(x) \rho }[/math]

subject to [math]\displaystyle{ \|x\|_2=1 }[/math]


which is equal to:

maximize [math]\displaystyle{ \textbf{Tr}({A}{X})-\textbf{Card}({X})\rho }[/math]

subject to [math]\displaystyle{ \textbf{Tr}({X})=1 }[/math]

[math]\displaystyle{ {X}\geq 0 }[/math]

[math]\displaystyle{ \textbf{Rank}({X})=1 }[/math]

By changing the formula to a semidefinite programming problem we 'll have:

maximize [math]\displaystyle{ \textbf{Tr}({A}{X})-\rho\textbf{1}^{T}|{X}|\textbf{1} }[/math]

subject to [math]\displaystyle{ \textbf{Tr}({X})=1 }[/math],

[math]\displaystyle{ {X}\geq 0 }[/math]

we can rewrite this problem as:

[math]\displaystyle{ max _{{X}\geq 0, \textbf{Tr}({X})=1} min _{|{U}_{ij}\leq \rho|}\textbf{Tr}({X}({A}+{U})) }[/math]

which can be written as a saddle-function format:

[math]\displaystyle{ f(x)=\hat{f}(x)+max_{u}\{\lt \textbf{T}x,u\gt -\hat{\phi}(u) : u \in \textbf{Q}_2\} }[/math]

Where [math]\displaystyle{ f }[/math] is defined over [math]\displaystyle{ Q_1 }[/math] which is a convex and differentiable and [math]\displaystyle{ \hat{\phi} (U) }[/math] is a continuous convex function over [math]\displaystyle{ Q_2 }[/math]. When a function can be written as a saddle-function format, using smoothing techniques will help us to reduce the complexity of solving

[math]\displaystyle{ min _{x\in \textbf{Q}_1}f(x) }[/math]

from [math]\displaystyle{ O(1/\epsilon ^2) }[/math] to [math]\displaystyle{ O(1/\epsilon) }[/math].

These process can be done in two steps.

1-Regularization :Regularization adds a strongly convex penalty to the saddle function and then estimate its [math]\displaystyle{ \epsilon- }[/math]approximation of [math]\displaystyle{ f }[/math] with Lipschitz continuous gradient

2-Optimal first-order minimization:It applies the optimal first-order scheme for Lipschitz continuous function.

Application of sparse PCA

We consider the problem which is discussed in previous sections as below:

maximize [math]\displaystyle{ \textbf{Tr}({A}{X})-\textbf{1}^{T}|{X}|\textbf{1} }[/math]

subject to [math]\displaystyle{ \textbf{Tr}({X})=1 }[/math],

[math]\displaystyle{ {X}\geq 0 }[/math]

[math]\displaystyle{ \rho }[/math] is assumed to be one without loss of generality. Duality allows us to rewrite this in saddle-function format:

[math]\displaystyle{ min_{{U}\in{Q}_1}f({U}) }[/math]

where

[math]\displaystyle{ {Q}_1=\{{U}\in \textbf{S}^{n}:|{U}_{ij}|\leq 1,i,j=1,...,n\},{Q}_2=\{{X}\in\textbf{S}^n:\textbf{Tr} X=1,X\geq0\} }[/math]

and

[math]\displaystyle{ f(U):=max_{X \in Q_2}\lt TU,X\gt -\hat{\phi}(X) }[/math] with [math]\displaystyle{ T=I_{n^2}, \hat{\phi}(X)=-\textbf{Tr}(AX) }[/math]

The same as what Nesterov <ref name='N2004'/> applied in his paper in 2003, we define Frobenius norm and prox-functions as following:

[math]\displaystyle{ d_1(U)=\frac{1}{2}U^T U }[/math]

where [math]\displaystyle{ U \in Q_1 }[/math] and ,[math]\displaystyle{ U_0 }[/math] is the center of it and satisfies [math]\displaystyle{ d_1(U_0)=0 }[/math].

[math]\displaystyle{ U_0:=arg min_{U\in Q_{1}}d_1(U) }[/math].

In addition we have:

[math]\displaystyle{ D_1:=max_{U \in Q_1}d_1(U)=n^2/2 }[/math]

The following could be concluded for [math]\displaystyle{ Q_2 }[/math] as well:

[math]\displaystyle{ d_2(X)=\textbf{Tr}(XlogX)+log(n) }[/math]

[math]\displaystyle{ max_{X\in Q_2}d_2(X)\leq log n:=D_2 }[/math]

Next we estimate the norm [math]\displaystyle{ (1,2) }[/math] norm of operator [math]\displaystyle{ T }[/math], which is defined as:

[math]\displaystyle{ \| T\| _{1,2}:= max_{X,U}\lt TX,U\gt :\| X\| _{F}=1,\|U\|^*_2=1 }[/math]

[math]\displaystyle{ =max_X\|X\|_2:\|X\|_F\leq 1 }[/math]

[math]\displaystyle{ =1 }[/math]


So the parameter are set to the following values:

[math]\displaystyle{ D_1=n^2/2,\sigma _1=1,D_2=log(n),\sigma_2=1/2,\|T\|_{1,2}=1 }[/math]


Regularization

As we discussed earlier and in Nesterov <ref name="N2004"/> paper, by regularization parameter which is [math]\displaystyle{ \mu }[/math]

[math]\displaystyle{ \mu:=\frac{\epsilon}{2D_2} }[/math]

the non-smooth function [math]\displaystyle{ f(X) }[/math] of the original problem is changed with

[math]\displaystyle{ min_{U \in Q_1}f_{\mu}(U) }[/math]

where it is penalized function with prox-function [math]\displaystyle{ d_2 }[/math]:

[math]\displaystyle{ f_{\mu}(U):=max_{X \in Q_2}\lt TU,X\gt -\hat{\phi}(X)-\mu d_2(X) }[/math]

Now the [math]\displaystyle{ f_\mu }[/math] is a smooth approximation of [math]\displaystyle{ f }[/math] on [math]\displaystyle{ Q_2 }[/math] and also [math]\displaystyle{ f_\mu }[/math] is Lipschitz-continuous function with constant [math]\displaystyle{ L }[/math] which is:

[math]\displaystyle{ L:=\frac{D_2\|T\|_{1,2}^2}{\epsilon 2\sigma_2} }[/math]

In our problem, the function can be computed explicitly as:

[math]\displaystyle{ f_\mu(U)=\mu log(\textbf{Tr}exp((A+U)/\mu))-\mu log n }[/math]

First order minimization

The input of this section is the smooth convex function [math]\displaystyle{ f_\mu }[/math] which is defined and computed in the previous section.Now the algorithm proceeds as follows <ref name="book2003">Introductory Lectures on Convex Optimization, Springer, 2003.</ref>:

Repeat

  1. Compute [math]\displaystyle{ f_\mu(U_k) }[/math] and [math]\displaystyle{ \nabla f_\mu (U_k) }[/math]
  2. Find [math]\displaystyle{ Y_k=argmin_{Y\in Q_1}\lt \nabla f_\mu (U), Y\gt +\frac{1}{2}L\|U-Y\|_F^2 }[/math]
  3. Find [math]\displaystyle{ Z_k=argmin_X\{\frac{L}{\sigma _1}d_1 (U)+\sum_{i=0}^{k}\frac{i+1}{2}\lt \nabla f_\mu (U_i), U-U_i\gt : U \in Q_1\} }[/math]
  4. set [math]\displaystyle{ U_k= \frac{2}{k+3}Z_k+\frac{k+1}{k+3}Y_k }[/math]

Until [math]\displaystyle{ gap \leq \epsilon }[/math]

The first step calculate the smooth function and its gradient. The second step estimate the gradient mapping and in the third and forth steps the sequence of [math]\displaystyle{ f_\mu }[/math] whose minimum could be calculated explicitly will be updated. for more detail about these steps you can see <ref name='N1983'>Y. Nesterov, A method of solving a convex programming problem with convergence rate O(1/k2), Soviet Mathematics Doklady, 27 (1983), pp. 372–376</ref> and <ref name="N2003">Smoothing technique and its application in semidefinite optimization, CORE Discussion Paper No. 2004/73, (2004).</ref>.

Code

The numerical codes used in this paper are provided by A. d'Aspremont and can be found here.

References

<references />