Predicting Hurricane Trajectories Using a Recurrent Neural Network

From statwiki
Revision as of 01:36, 15 November 2021 by Y37duan (talk | contribs) (Model Architecture)
Jump to: navigation, search

Presented by

Yishu Duan, Xibei Di, Xin Yan


Hurricanes originate in the warm water of the Caribbean Sea and Atlantic Ocean, and generally travel from their origin to the north, northwest, or northeast. Hurricanes are usually accompanied by strong winds, heavy rainfall, and dangerous tides, as one of the most common natural disasters on the planet, hurricanes could threaten the safety of people’s economic property assets and human lives. This makes predicting the hurricane paths by modeling the hurricane behavior extremely essential.

Recurrent Neural Networks (RNNs) are a kind of artificial neural networks, where the weights of it can be modified to make the model learn complex dynamic time-dependent behavior. A RNN can effectively simulate the complex nonlinear temporal relationship of hurricanes, which can improve the future prediction of the accuracy of hurricane path.

Thus, in this paper, fully connected recurrent neural networks using a grid model are built for hurricane track prediction, and the result will be compared with other hurricane predicting techniques.

Related Work

Scientists had been advocating in developing models for predicting and tracking hurricane paths, and had been persistently improving the accuracy over the past decades, whereas these currently existing models are quite different from each other in terms of the structure as well as the complexity. The four main types of models currently used by the National Hurricane Center (NHC) of the National Oceanic and Atmospheric Administration (NOAA) include:

  1. Dynamical models
    • Complex since the highest computing power is desired to deal with equations of physical motions.
    • Ex. Geophysical Fluid Dynamics Laboratory (GFDL) Hurricane Prediction System (by Kurihara, Tuleya, and Bender, 1998)
  2. Statistical models
    • Light-weight since only statistical formulas are used.
    • Ex. Statistical non-parametric model (by Hall and Jewson, 2007)
  3. Statistical-dynamical models
    • Allows large-scale variables as predictors.
    • Ex. Statistical-dynamical model (by Wang et al., 2009)
  4. Ensemble or consensus models
    • Gives a combination of predictions from different models, physical parameters, or initial conditions.
    • Ex. Sparse Recurrent Neural Network (by Moradi Kordmahalleh, Gorji Sefidmazgi, and Homai-far, 2016)

However, since there are not enough collected hurricane observations, and the atmospheric systems are nonlinear and complex, the predictive ability of linear models is limited. Thus, a network that is capable of modeling the hurricane's time-dependent behaviours is desired.

Model Architecture

A recurrent neural network, which is capable of modeling nonlinear and complex sequential or dynamical relations between variables, would be used to model the hurricane's time-dependent behaviors. In this fully connected network RNN, the connection weights are the training parameters, which will be updated appropriately. The total time of the network is represented by [math] t=1,...,T [/math] and the number of hidden layers is represented by [math] l=1,...,L [/math] . Figure 1 below shows an example of RNN architecture with two hidden layers.

Forecasting Result

In this experiment, 32327 data provided by Unisys Weather data were used. The dataset is split into training sets and testing sets: 85% of the total hurricanes are used for training, and 15% are used for testing the accuracy of the model’s predictive performance. Each data involves five features: pressure, grid identification number, distance, direction, and wind speed. Figure 2 shows the predictive performance of the built grid-based RNN model on six randomly selected Atlantic Hurricane Trajectories. It can be seen that the grid-based RNN model predicts the hurricane trajectory location well since the real grid locations (black line in the figure) and the predicted grid locations (red line in the figure) match moderately well in all six randomly selected Atlantic Hurricane Trajectory.