Do Deep Neural Networks Suffer from Crowding

From statwiki
Revision as of 18:16, 19 March 2018 by Jssambee (talk | contribs)
Jump to: navigation, search

Still working on this.


Ever since the evolution of Deep Networks, there has been tremendous amount of research and effort that has been put into making machines capable of recognizing objects the same way as humans do. Humans can recognize objects in a way that is invariant to scale, translation, and clutter. Crowding is another visual effect suffered by humans, in which an object that can be recognized in isolation can no longer be recognized when other objects, called flankers, are placed close to it and this is a very common real-life experience. This paper focuses on studying the impact of crowding on Deep Neural Networks (DNNs) by adding clutter to the images and then analyzing which models and settings suffer less from such effects.

The paper investigates two types of DNNs for crowding: traditional deep convolutional neural networks(DCNN) and a multi-scale eccentricity-dependent model which is an extension of the DCNNs and inspired by the retina where the receptive field size of the convolutional filters in the model grows with increasing distance from the center of the image, called the eccentricity and will be explained below. The authors focus on the dependence of crowding on image factors, such as flanker configuration, target-flanker similarity, target eccentricity and premature pooling in particular.


Deep Convolutional Neural Networks