Difference between revisions of "Deep Transfer Learning with Joint Adaptation Networks"

From statwiki
Jump to: navigation, search
(Abstract)
 
(Abstract)
 
Line 2: Line 2:
  
  
----
 
  
 
Deep networks have been successfully applied to learn transferable features for adapting models from a source domain to a different target domain. In this paper, we present joint adaptation networks (JAN), which learn a transfer network by aligning the joint distributions of multiple domain-specific layers across domains based on a joint maximum mean discrepancy (JMMD) criterion. Adversarial training strategy is adopted to maximize JMMD such that the distributions of the source and target domains are made more distinguishable. Learning can be performed by stochastic gradient descent with the gradients computed by back-propagation in linear-time. Experiments testify that our model yields state of the art results on standard datasets.
 
Deep networks have been successfully applied to learn transferable features for adapting models from a source domain to a different target domain. In this paper, we present joint adaptation networks (JAN), which learn a transfer network by aligning the joint distributions of multiple domain-specific layers across domains based on a joint maximum mean discrepancy (JMMD) criterion. Adversarial training strategy is adopted to maximize JMMD such that the distributions of the source and target domains are made more distinguishable. Learning can be performed by stochastic gradient descent with the gradients computed by back-propagation in linear-time. Experiments testify that our model yields state of the art results on standard datasets.

Latest revision as of 15:32, 2 October 2017

Abstract

Deep networks have been successfully applied to learn transferable features for adapting models from a source domain to a different target domain. In this paper, we present joint adaptation networks (JAN), which learn a transfer network by aligning the joint distributions of multiple domain-specific layers across domains based on a joint maximum mean discrepancy (JMMD) criterion. Adversarial training strategy is adopted to maximize JMMD such that the distributions of the source and target domains are made more distinguishable. Learning can be performed by stochastic gradient descent with the gradients computed by back-propagation in linear-time. Experiments testify that our model yields state of the art results on standard datasets.