# Difference between revisions of "DeepVO Towards end to end visual odometry with deep RNN"

(Added Critiques) |
|||

Line 58: | Line 58: | ||

The paper concludes that the proposed RCNN VO model is a viable approach. However, it is not expected as a replacement to the classic geometry-based approach. | The paper concludes that the proposed RCNN VO model is a viable approach. However, it is not expected as a replacement to the classic geometry-based approach. | ||

− | == Critiques | + | == Critiques == |

+ | |||

+ | This paper cannot be considered as a critical advance to the state of the art as the authors just suggest a method combining CNN and RNNs for the visual odometry problem. The authors also state that deep learning in terms of simple feed-forward Neural networks and CNNs has already been used in this problem. Only an RNN approach seems to have been not tried on this problem. The authors propose a combined RCNN and geometric-based approach towards the end of the paper. But, it is not intuitive how these two potentially very diverse methods could be combined. The authors also do not explain any proposed methods for the combination. The authors don't build a compelling case against the state of the art methods or convincingly prove the superiority of the RCNN or a combined method. For example, the RCNN and other state of the art geometry-based methods have a deficiency of getting lower accuracies when shown a large open area in the images as mentioned by the authors. The authors put forth some techniques to solve this problem for the geometry approaches but they state that they do not have a similar method for the deep learning based approaches. Thus, in such scenarios, the methods proposed by the authors don't seem to work at all. | ||

== References == | == References == |

## Revision as of 12:01, 26 October 2018

## Contents

## Introduction

Visual Odometry (VO) is a computer vision technique for estimating an object’s position and orientation from camera images. It is an important technique commonly used for “pose estimation and robot localization”, with notable applications on the Mars Exploration Rovers and Autonomous Vehicles [x1] [x2]. While the research field of VO is broad, this paper focuses on the topic of monocular visual odometry. Particularly, the authors examine prominent VO methods and argue mainstream geometry based monocular VO methods should be amended with deep learning approaches. Subsequently, the paper proposes a novel deep-learning based end-to-end VO algorithm, and then empirically demonstrates its viability.

## Related Work

Visual odometry algorithms can be grouped into two main categories. The first is known as the conventional methods, and they are based on established principles of geometry. Specifically, an object’s position and orientation are obtained by identifying reference points and calculating how those points change over the image sequence. Moreover, algorithms in this category can be divided into two sub-categories, which differ by how they select reference points. Namely, sparse feature based methods establish reference points using image salient features, such as corners and edges [8]. Whereas, direct methods make use of the whole image and consider every pixel as a reference point [11]. Furthermore, semi-direct methods that combine both approaches are recently gaining popularity [16].

Today, most of state-of-the-art VO algorithms belong to the geometry family. However, they have significant limitations. For example, direct methods assume “photometric consistency” [11]. Whereas, sparse feature methods are prone to “drifting” because of outliers and noises. As the result, the paper argues geometry-based methods are difficult to engineer and calibrate, thus limiting its practicality. Figure 1 illustrates the general architecture of geometry-based algorithms, and it outlines necessary drift correction techniques such as Camera Calibration, Feature Detection, Feature Matching (tracking), Outlier Rejection, Motion Estimation, Scale Estimation, and Local optimization (bundle adjustment).

Figure 1. Architectures of the conventional geometry-based monocular VO method.

The second category of VO algorithms is based on learning. Namely, they try to learn an object’s “motion model’ from labeled optical flows. Initially, these models are trained using classic Machine Learning techniques such as KNN [15], Gaussian Process [16], and Support Vector Machines[17]. However, these models were inefficient to handle “highly non-linear and high dimensional” inputs, which cause them to perform poorly in comparison with geometry-based methods. For this reason, Deep Learning-based approaches are dominating research in this field and producing many promising results. For example, CNN based models can now recognize places based on appearance [18] and detect direction and velocity from stereo inputs [20]. Moreover, a deep learning model even achieves “robust VO with blurred and under-exposed images [21]”. While these successes are encouraging, the authors observe that a CNN based architecture is “incapable of modeling sequential information”. Instead, they propose to use RNN to tackle this problem.

## End-to-End Visual odometry through RCNN

### Architecture Overview

An end-to-end monocular VO model is proposed by utilizing deep Recurrence Convolutional Neural Network (RCNN). Figure 2 depicts the end-to-end model, which is comprised of three main stages. First, the model takes a monocular video as input and it pre-processes the image sequence by “subtracting the mean RGB values” from each frame. Then, consecutive image frames are stacked to form tensors, which become the inputs for the CNN stage. The purpose of the CNN stages is to extract salient features from the input image. The structure of the CNN is inspired by FlowNet [24] and designed to model optimal flows. Details of the CNN structure is shown in Table 1. Using CNN features as input, the RNN stage tries to estimate the temporal and sequential relations among input features. The RNN network is composed of two Long Short-Term Memory networks (LSTM), which allows the network to make predictions based on long-term and short-term dependencies. Figure 3 illustrated the structure. In this way, the RCNN architecture allows for end-to-end pose estimation for each time step.

Figure 2. Architectures of the proposed RCNN based monocular VO system.

Table 1. CNN structure

Figure 3. Folded and unfolded LSTMs and its internal structure.

### Training and Optimisation

The proposed RCNN model can be represented as a conditional probability of poses given an image sequence: p(Yt|Xt) = p(y1,...,yt|x1,...,xt). Given this probability function is expressed as a deep RCNN, the problem can be interpreted as finding the hyperparameters or network weights that minimize the loss function between actual and predicted poses, in which the loss function, is chosen to be Mean Square Error (MSE) of all positions and orientation.

## Experiments and Results

The paper evaluated the proposed RCNN VO model by comparing it empirically with the open-source VO library of LIBVISO2 [7], which is a well-known geometry based model. The comparison is carried out using the KITTI VO/SLAM benchmark [3]. In total, the KITTI VO/SLAM benchmark contains 22 image sequences, 11 of which are labeled with ground truths. Two separate experiments are performed.

1. Quantitatively Analysis is performed using only labeled image sequence. Namely, 4 of those images sequences were used for training and the others for testing. Table 2 and Figure 6 outlines the result, and they show that the proposed RCNN model performs consistently better than the monocular VISO2_M model. However, it performs worse than the stereo VISO2_S model.

2. The generalizability of the proposed RCNN model in a new environment is evaluated using unlabeled image sequences. Figure 8 outlines the result, and it shows that the proposed model is able to generalize better than the monocular VISO2_M model and performs roughly the same as the stereo VISO2_S model.

## Conclusions

The paper concludes that the proposed RCNN VO model is a viable approach. However, it is not expected as a replacement to the classic geometry-based approach.

## Critiques

This paper cannot be considered as a critical advance to the state of the art as the authors just suggest a method combining CNN and RNNs for the visual odometry problem. The authors also state that deep learning in terms of simple feed-forward Neural networks and CNNs has already been used in this problem. Only an RNN approach seems to have been not tried on this problem. The authors propose a combined RCNN and geometric-based approach towards the end of the paper. But, it is not intuitive how these two potentially very diverse methods could be combined. The authors also do not explain any proposed methods for the combination. The authors don't build a compelling case against the state of the art methods or convincingly prove the superiority of the RCNN or a combined method. For example, the RCNN and other state of the art geometry-based methods have a deficiency of getting lower accuracies when shown a large open area in the images as mentioned by the authors. The authors put forth some techniques to solve this problem for the geometry approaches but they state that they do not have a similar method for the deep learning based approaches. Thus, in such scenarios, the methods proposed by the authors don't seem to work at all.

## References

[1] S. Wang, R. Clark, H. Wen and N. Trigoni, "DeepVO: Towards end-to-end visual odometry with deep Recurrent Convolutional Neural Networks," 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 2017, pp. 2043-2050.

[2] M. Maimone, Y. Cheng, and L. Matthies, "Two years of Visual Odometry on the Mars Exploration Rovers," Journal of Field Robotics. 24 (3): 169–186, 2007.

[3] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the KITTI vision benchmark suite,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012.

[7] A. Geiger, J. Ziegler, and C. Stiller, “Stereoscan: Dense 3D reconstruction in real-time,” in Intelligent Vehicles Symposium (IV), 2011.

[8] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “MonoSLAM: Real-time single camera SLAM,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 6, pp. 1052–1067, 2007.

[11] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, “DTAM: Dense tracking and mapping in real-time,” in Proceedings of IEEE International Conference on Computer Vision (ICCV). IEEE, 2011, pp. 2320–2327.

[15] R. Roberts, H. Nguyen, N. Krishnamurthi, and T. Balch, “Memory-based learning for visual odometry,” in Proceedings of IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2008, pp. 47–52.

[16] V. Guizilini and F. Ramos, “Semi-parametric learning for visual odometry,” The International Journal of Robotics Research, vol. 32, no. 5, pp. 526–546, 2013.

[17] T. A. Ciarfuglia, G. Costante, P. Valigi, and E. Ricci, “Evaluation of non-geometric methods for visual odometry,” Robotics and Autonomous Systems, vol. 62, no. 12, pp. 1717–1730, 2014.

[18] N. Su ̈nderhauf, S. Shirazi, A. Jacobson, F. Dayoub, E. Pepperell, B. Upcroft, and M. Milford, “Place recognition with convnet landmarks: Viewpoint-robust, condition-robust, training-free,” in Proceedings of Robotics: Science and Systems (RSS), 2015.

[20] A. Kendall, M. Grimes, and R. Cipolla, “Convolutional networks for real-time 6-DoF camera relocalization,” in Proceedings of International Conference on Computer Vision (ICCV), 2015.

[21] G. Costante, M. Mancini, P. Valigi, and T. A. Ciarfuglia, “Exploring representation learning with CNNs for frame-to-frame ego-motion estimation,” IEEE Robotics and Automation Letters, vol. 1, no. 1, pp.18–25, 2016.

[24] A. Dosovitskiy, P. Fischery, E. Ilg, C. Hazirbas, V. Golkov, P. van der Smagt, D. Cremers, T. Brox et al., “Flownet: Learning optical flow with convolutional networks,” in Proceedings of IEEE International Conference on Computer Vision (ICCV). IEEE, 2015, pp. 2758–2766.