Conditional Image Synthesis with Auxiliary Classifier GANs

From statwiki
Revision as of 01:12, 16 November 2017 by Mike Rudd (talk | contribs) (Motivation)
Jump to: navigation, search

Abstract: "In this paper we introduce new methods for the improved training of generative adversarial networks (GANs) for image synthesis. We construct a variant of GANs employing label conditioning that results in 128×128 resolution image samples exhibiting global coherence. We expand on previous work for image quality assessment to provide two new analyses for assessing the discriminability and diversity of samples from class-conditional image synthesis models. These analyses demonstrate that high resolution samples provide class information not present in low resolution samples. Across 1000 ImageNet classes, 128×128 samples are more than twice as discriminable as artificially resized 32×32 samples. In addition, 84.7% of the classes have samples exhibiting diversity comparable to real ImageNet data." (Odena et al., 2016)

Introduction

Motivation

The authors introduce a GAN architecture for generating high resolution images from the ImageNet dataset. They show that this architecture makes it possible to split the generation process into many sub-models. They further suggest that GANs have trouble generating globally coherent images, and that this architecture is responsible for the coherence of their samples. They experimentally demonstrate that generating higher resolution images allow the model to encode more class-specific information, making them more visually discriminable than lower resolution images even after they have been resized to the same resolution.

The second half of the paper introduces metrics for assessing visual discriminability and diversity of synthesized images. The discussion of image diversity in particular is important due to the tendency for GANs to 'collapse' to only produce one image that best fools the discriminator (Goodfellow et al., 2014).

Previous Work

Of all image synthesis methods (e.g. variational autoencoders, autoregressive models, invertible density estimators), GANs have become one of the most popular and successful due to their flexibility and the ease with which they can be sampled from. A standard GAN framework pits a generative model $G$ against a discriminative adversary $D$. The goal of $G$ is to learn a mapping from a latent space $Z$ to a real space $X$ to produce examples (generally images) indistinguishable from training data. The goal of the $D$ is to iteratively learn to predict when a given input image is from the training set or a synthesized image from $G$. Jointly the models are trained to solve the game-theoretical minimax problem defined by Goodfellow et al., (2014): $$\underset{G}{\text{min }}\underset{D}{\text{max }}V(G,D)=\mathbb{E}_{X\sim p_{data}(x)}[log(D(X))]+\mathbb{E}_{Z\sim p_{Z}(z)}[log(1-D(G(Z)))]$$

While this initial framework has clearly demonstrated great potential, other authors have proposed changes to the method to improve it. Many such papers propose changes to the training process (Salimans et al., 2016),(Karras et al., 2017), which is notoriously difficult for some problems. Others propose changes to the model itself. Mirza & Osindero, (2014) augment the model by supplying the class of observations to both the generator and discriminator to produce class-conditional samples. According to van den Oord et al., (2016), conditioning image generation on classes can greatly improve their quality. Other authors have explored using even richer side information in the generation process with good results (Reed et al., 2016).

Another model modification relevant to this paper is to force the discriminator network to reconstruct side information by adding an auxiliary network to classify generated (and real) images.

Contributions

Model

The authors propose a conditional GAN that both takes the class to be synthesized as input to the, and includes a classification accuracy term in the loss function of the discriminator. They also split the generation process into many class-specific submodels.

Measurement Methods

The authors propose two measurement methods to assess the discriminability and diversity of the generated images.

Experimental Results on Image Resolution

Results

Critique

Model

Not very different from other GANs. Some unsupported claims about stabilizing training etc.

Metrics

Experiments

Discussion of overfitting says b/c nearest neighbours under L1 measure in pixel space are not similar looking it doesn't overfit.

Conclusion

References

  1. Odena, A., Olah, C., & Shlens, J. (2016). Conditional image synthesis with auxiliary classifier gans. arXiv preprint arXiv:1610.09585.
  2. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing systems (pp. 2672-2680).
  3. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., & Chen, X. (2016). Improved techniques for training gans. In Advances in Neural Information Processing Systems (pp. 2234-2242).
  4. Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2017). Progressive Growing of GANs for Improved Quality, Stability, and Variation. arXiv preprint arXiv:1710.10196.
  5. Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784.
  6. van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., & Graves, A. (2016). Conditional image generation with pixelcnn decoders. In Advances in Neural Information Processing Systems (pp. 4790-4798).
  7. Reed, S. E., Akata, Z., Mohan, S., Tenka, S., Schiele, B., & Lee, H. (2016). Learning what and where to draw. In Advances in Neural Information Processing Systems (pp. 217-225).