proof of Theorem 1
Let [math]\displaystyle{ \textbf{u}_k }[/math] and [math]\displaystyle{ \textbf{v}_k }[/math] denote column k of [math]\displaystyle{ \textbf{U} }[/math] and [math]\displaystyle{ \textbf{V} }[/math] respectively, We prove the theorem by expanding out the squared Frobenius norm and rearranging terms:
The above proof is the proof of Theorem 2.1 in <ref name="WTH2009">Daniela M. Witten, Robert Tibshirani, and Trevor Hastie. (2009) "A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis". Biostatistics, 10(3):515–534.</ref>
References
</references>