stat946f10
Maximum Variance Unfolding AKA Semidefinite Embedding
The main poposal of the technique is to lean a suitable kernel with several constraints when the data is given.
Here is the constraints for the kernel.
1. Semipositive definiteness
Kernel PCA is a kind of spectral decompostion in Hilber space. The semipositive definiteness interprets the kernel matrix as storing the inner products of vectors in a Hilber space.
2. Centering