stat441w18/Convolutional Neural Networks for Sentence Classification
Presented by
1. Ben Schwarz
2. Cameron Miller
3. Hamza Mirza
4. Pavle Mihajlovic
5. Terry Shi
6. Yitian Wu
7. Zekai Shao
Introduction
Model
Theory of Convolutional Neural Networks
Let [math]\displaystyle{ \boldsymbol{x}_i \in \mathbb{R}^k }[/math] be the [math]\displaystyle{ i }[/math]-th word in [math]\displaystyle{ \boldsymbol{x}_{1:n} }[/math], a sentence of length [math]\displaystyle{ n }[/math], [math]\displaystyle{ \boldsymbol{x}_{1:n} = \boldsymbol{x}_1 \oplus \boldsymbol{x}_2 \oplus \dots \oplus \boldsymbol{x}_{n} }[/math], where [math]\displaystyle{ \oplus }[/math] is the concatenation operator.
A Convolutional Neural Network (CNN) is a nonlinear function [math]\displaystyle{ \boldsymbol{f}: \mathbb{R}^{hk} \to \mathbb{R} }[/math] that computes a series of outputs [math]\displaystyle{ c_i }[/math] from a concatenation of words [math]\displaystyle{ \boldsymbol{x}_i, \boldsymbol{x}_{i+1}, \dots, \boldsymbol{x}_{i+h-1} }[/math], represented by [math]\displaystyle{ \boldsymbols{x}_{i:i+h-1} }[/math]
Model Regularization
Datasets and Experimental Setup
Hyperparameters and Training
MR:
SST-1:
SST-2:
Subj:
TREC:
CR:
MPQA:
Pre-trained Word Vectors
Model Variations
CNN-rand:
CNN-static:
CNN-static:
CNN-non-static:
CNN-multichannel: