stat940W25-presentation
Group 24 Presentation: Mitigating the Missing Fragmentation Problem in De Novo Peptide Sequencing With A Two-Stage Graph-Based Deep Learning Model
Background
- Proteins are crucial for biological functions
- Proteins are formed from peptides which are sequences of amino acids
- Mass spectrometry is used to analyze peptide sequences
- De Novo sequencing is used to piece together peptide sequences when the sequences are missing from existing established protein databases
- Deep learning has become commonly implimented to solve the problem of de-novo peptide sequencing
- When a peptide fails to fragment in the expected manner, it can make protein reconstruction difficult due to missing data
- One error in the protein can propogate to errors throughout the entire sequence
Paper Contributions
- Graph Novo was developed to handle incomplete segments
- GraphNovo-PathSearcher instead of directly predicting, does a path search method to predict the next peptide in a sequence
- GraphNovo-SeqFiller instead of directly predicting, does a path search method to predict the next peptide in a sequence.
- Input is mass spectrum from mass spectrometry
- Graph construction is done where nodes represent possible fragments, and edges represent possible peptides (PathSearcher module)
- PathSearcher uses machine learning to find the optimal path on the generated graph
- SeqFiller fills in missing amino acids that may have not been included in the PathSearcher module due to lacking data from the mass spectrometry inputs