Fairness Without Demographics in Repeated Loss Minimization
This page contains the summary of the paper "Fairness Without Demographics in Repeated Loss Minimization" by Hashimoto, T. B., Srivastava, M., Namkoong, H., & Liang, P. which was published at the International Conference of Machine Learning (ICML) in 2018. In the following, an
Overview of the Paper
Introduction
Fairness
Example and Problem Setup
Why Empirical Risk Minimization (ERM) does not work
Distributonally Robust Optimization (DRO)
Risk Bounding Over Unknown Groups
At this point our goal is to minimize the worst-case group risk over a single time-step [math]\displaystyle{ \mathcal{R} }[/math]