Wasserstein Auto-Encoders

From statwiki
Jump to navigation Jump to search

Introduction

Recent years have seen a convergence of two previously distinct approaches: representation learning from high dimensional data, and unsupervised generative modeling. In the field that formed at the intersection, Variational Auto-Encoders (VAEs) and Generative Adversarial Networks (GANs) have emerged to be the most popular.

Motivation

Proposed Method

Conclusion