F21-STAT 441/841 CM 763-Proposal

From statwiki
Revision as of 13:13, 6 October 2020 by Bsharman (talk | contribs)
Jump to navigation Jump to search

Use this format (Don’t remove Project 0)

Project # 0 Group members:

Last name, First name

Last name, First name

Last name, First name

Last name, First name

Title: Making a String Telephone

Description: We use paper cups to make a string phone and talk with friends while learning about sound waves with this science project. (Explain your project in one or two paragraphs).


Project # 1 Group members:

Song, Quinn

Loh, William

Bai, Junyue

Choi, Phoebe

Title: APTOS 2019 Blindness Detection

Description:

Our team chose the APTOS 2019 Blindness Detection Challenge from Kaggle. The goal of this challenge is to build a machine learning model that detects diabetic retinopathy by screening retina images.

Millions of people suffer from diabetic retinopathy, the leading cause of blindness among working-aged adults. It is caused by damage to the blood vessels of the light-sensitive tissue at the back of the eye (retina). In rural areas where medical screening is difficult to conduct, it is challenging to detect the disease efficiently. Aravind Eye Hospital hopes to utilize machine learning techniques to gain the ability to automatically screen images for disease and provide information on how severe the condition may be.

Our team plans to solve this problem by applying our knowledge in image processing and classification.



Project # 2 Group members:

Li, Dylan Li, Mingdao Lu, Leonie Sharman,Bharat

Title: Risk prediction in life insurance industry using supervised learning algorithms

Description:

In this project, we aim to replicate and possibly improve upon the work of Jayabalan et al. in their paper “Risk prediction in life insurance industry using supervised learning algorithms”. We will be using the Prudential Life Insurance Data Set that the authors have used and have shared with us. We will be pre-processing the data to replace missing values, using feature selection using CFS and feature reduction using PCA use this processed data to perform Classification via four algorithms – Neural Networks, Random Tree, REPTree and Multiple Linear Regression. We will compare the performance of these Algorithms using MAE and RMSE metrics and come up with visualizations that can explain the results easily even to a non-quantitative audience.

Our goal behind this project is to learn applying the algorithms that we learned in our class to an industry dataset and come up with results that we can aid better, data-driven decision making.