stat841
Scribe sign up
Course Note for Sept.30th (Classfication_by Liang Jiaxi)
1.
2. Classification
Classification is a function between two random varialbe
3. Error data
Definition:
True error rate of a classifier(h) is defined as the probability that the prediction of Y from X do not exactly equal to Y, namely, [math]\displaystyle{ \, L(h)=P(h(X) \neq Y) }[/math].
Empirical error rate(training error rate) of a classifier(h) is . The mathematical defition is as below:
[math]\displaystyle{ \, L_{h}= \frac{1}{n} \sum_{i=1}^{n} I(h(X_{i} \neq Y_{i})) }[/math], where [math]\displaystyle{ \, I }[/math]. is an indicator that [math]\displaystyle{ \, I= }[/math].
4. Bayes Classifier