Wasserstein Auto-Encoders

From statwiki
Jump to navigation Jump to search

Introduction

Recent years have seen a convergence of two previously distinct approaches: representation learning from high dimensional data, and unsupervised generative modeling. In the field that formed at their intersection, Variational Auto-Encoders (VAEs) and Generative Adversarial Networks (GANs) have emerged to become well-established. VAEs are theoretically elegant but with the drawback that they tend to generate blurry samples when applied to natural images. GANs on the other hand produce better visual quality of sampled images, but come without an encoder, are harder to train and suffer from the mode-collapse problem when the trained model is unable to capture all the variability in the true data distribution. Thus there has been a push to come up with the best way to combine them together, but a principled unifying framework is yet to be discovered.

This work proposes a new family of regularized auto-encoders called the Wasserstein Auto-Encoder (WAE). The proposed method provides a novel theoretical insight into setting up an objective function for auto-encoders from the point of view of of optimal transport (OT). This theoretical formulation leads the authors to examine adversarial and maximum mean discrepancy based regularizers for matching a prior and the distribution of encoded data points in the latent space. An empirical evaluation is performed on MNIST and CelebA datasets, where WAE is found to generate samples of better quality than VAE while preserving training stability, encoder-decoder structure and nice latent manifold structure.

The main contribution of the proposed algorithm is to provide theoretical foundations for using optimal transport cost as the auto-encoder objective function, while blending auto-encoders and GANs in a principled way. It also theoretically and experimentally explores the interesting relationship between WAEs, VAEs and adversarial auto-encoders.

Proposed Approach

Media:Example.ogg

Comparison with Related Work

Conclusion