STAT946F17/ Dance Dance Convolution
Introduction
Background Knowledge
- NTM
Neural Machine Translation (NMT), which is based on deep neural networks and provides an end- to-end solution to machine translation, uses an RNN-based encoder-decoder architecture to model the entire translation process. Specifically, an NMT system first reads the source sentence using an encoder to build a "thought" vector, a sequence of numbers that represents the sentence meaning; a decoder, then, processes the "meaning" vector to emit a translation. (Figure 1)[1]
- Beam Search
Decoding process:
Problem: Choosing the word with highest score at each time step t is not necessarily going to give you the sentence with the highest probability(Figure 2). Beam search solves this problem (Figure 3). Beam search has a size m such that at each time step t, it takes the top m proposal and continues decoding with each one of them. In the end, you will get a sentence with the highest probability not in the word level.