a Deeper Look into Importance Sampling: Difference between revisions
Line 7: | Line 7: | ||
=====Problem===== | =====Problem===== | ||
<math> \displaystyle \hat I | <math> \displaystyle \hat I </math> | ||
====Jenson's Inequality==== | ====Jenson's Inequality==== | ||
===[[Continuing on]] - June 5, 2009=== | ===[[Continuing on]] - June 5, 2009=== |
Revision as of 22:04, 3 June 2009
A Deeper Look into Importance Sampling - June 3, 2009
From last class, we have determined that an integral can be written in the form [math]\displaystyle{ I = \displaystyle\int h(x)f(x)\,dx }[/math] [math]\displaystyle{ = \displaystyle\int \frac{h(x)f(x)}{g(x)}g(x)\,dx }[/math] We continue our discussion of Importance Sampling here.
Importance Sampling
We can see that the integral [math]\displaystyle{ \displaystyle\int \frac{h(x)f(x)}{g(x)}g(x)\,dx = \int \frac{f(x)}{g(x)}h(x) g(x)\,dx }[/math] is just [math]\displaystyle{ = \displaystyle E_g(h(x)) \rightarrow }[/math]the expectation of h(x) with respect to g(x), where [math]\displaystyle{ \displaystyle \frac{f(x)}{g(x)} }[/math] is a weight [math]\displaystyle{ \displaystyle\beta(x) }[/math]. In the case where [math]\displaystyle{ \displaystyle f \gt g }[/math], a greater weight for [math]\displaystyle{ \displaystyle \beta(x) }[/math] will be assigned.
Problem
[math]\displaystyle{ \displaystyle \hat I }[/math]