a Deeper Look into Importance Sampling: Difference between revisions

From statwiki
Jump to navigation Jump to search
Line 4: Line 4:
====Importance Sampling====
====Importance Sampling====


We can see that the integral <math>\displaystyle\int \frac{h(x)f(x)}{g(x)}g(x)\,dx = \int \frac{f(x)}{g(x)}h(x) g(x)\,dx</math> is just <math>= \displaystyle E_g(h(x)) \rightarrow</math>the expectation of h(x) with respect to g(x), where <math>\displaystyle \frac{f(x)}{g(x)} </math> is a weight <math>\beta(x)</math>
We can see that the integral <math>\displaystyle\int \frac{h(x)f(x)}{g(x)}g(x)\,dx = \int \frac{f(x)}{g(x)}h(x) g(x)\,dx</math> is just <math>= \displaystyle E_g(h(x)) \rightarrow</math>the expectation of h(x) with respect to g(x), where <math>\displaystyle \frac{f(x)}{g(x)} </math> is a weight <math>\displaystyle\beta(x)</math>


====Jenson's Inequality====
====Jenson's Inequality====


===[[Continuing on]] - June 5, 2009===
===[[Continuing on]] - June 5, 2009===

Revision as of 21:32, 3 June 2009

A Deeper Look into Importance Sampling - June 3, 2009

From last class, we have determined that an integral can be written in the form [math]\displaystyle{ I = \displaystyle\int h(x)f(x)\,dx }[/math] [math]\displaystyle{ = \displaystyle\int \frac{h(x)f(x)}{g(x)}g(x)\,dx }[/math] We continue our discussion of Importance Sampling here.

Importance Sampling

We can see that the integral [math]\displaystyle{ \displaystyle\int \frac{h(x)f(x)}{g(x)}g(x)\,dx = \int \frac{f(x)}{g(x)}h(x) g(x)\,dx }[/math] is just [math]\displaystyle{ = \displaystyle E_g(h(x)) \rightarrow }[/math]the expectation of h(x) with respect to g(x), where [math]\displaystyle{ \displaystyle \frac{f(x)}{g(x)} }[/math] is a weight [math]\displaystyle{ \displaystyle\beta(x) }[/math]

Jenson's Inequality

Continuing on - June 5, 2009