Task Understanding from Confushing Multitask Data: Difference between revisions

From statwiki
Jump to navigation Jump to search
Line 41: Line 41:
=Experiment=
=Experiment=
==Setup==
==Setup==
3 data sets are used to compare CSL to existing methods, 1 function regression task and 2 image classification tasks.  
3 data sets are used to compare CSL to existing methods, 1 function regression task and 2 image classification tasks.  
The function regression data comes in the form of <math>(x_i,y_i),i=1,...,m</math> pairs. However, unlike typical regression problems, there are multiple <math>f_j(x),j=1,...,n</math> mapping functions, so the goal is to recover both the mapping functions <math>f_j</math> as well as determine which mapping function corresponds to each of the <math>m</math> observations.
The function regression data comes in the form of <math>(x_i,y_i),i=1,...,m</math> pairs. However, unlike typical regression problems, there are multiple <math>f_j(x),j=1,...,n</math> mapping functions, so the goal is to recover both the mapping functions <math>f_j</math> as well as determine which mapping function corresponds to each of the <math>m</math> observations.


Line 47: Line 49:


The second image classification data set is the Kaggle Fashion Product experiment. This data set has more observations than the "colored-MNIST" data and consists of pictures labelled with either the “Gender”, “Category”, and “Color” of the clothing item.
The second image classification data set is the Kaggle Fashion Product experiment. This data set has more observations than the "colored-MNIST" data and consists of pictures labelled with either the “Gender”, “Category”, and “Color” of the clothing item.
==Metrics of Confusing Supervised Learning==
==Results==


==Data==
==Data==

Revision as of 16:48, 15 November 2020

Task Understanding from Confusing Multi-task Data

Presented By aslkdfj;awekrf

1. Introduction

hialll

Hello

[math]\displaystyle{ \begin{align*} e & = \pi = \sqrt{g} \end{align*} }[/math]


2. Related Work

How does formatting of paragraphs work? hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi

[math]\displaystyle{ \begin{align*} e & = \text{Hellow}\\ & = \dfrac{123}{4}\\ \end{align*} }[/math]


[math]\displaystyle{ \begin{align*} h+1 & = \dfrac{abc}{\text{def}}\\ & = \dfrac{123}{4}\\ \end{align*} }[/math]


Experiment

Setup

3 data sets are used to compare CSL to existing methods, 1 function regression task and 2 image classification tasks.

The function regression data comes in the form of [math]\displaystyle{ (x_i,y_i),i=1,...,m }[/math] pairs. However, unlike typical regression problems, there are multiple [math]\displaystyle{ f_j(x),j=1,...,n }[/math] mapping functions, so the goal is to recover both the mapping functions [math]\displaystyle{ f_j }[/math] as well as determine which mapping function corresponds to each of the [math]\displaystyle{ m }[/math] observations.

The first image classification data set consists of the MNIST digit data that has been colored. Each observation in this modified set consists of a colored image ([math]\displaystyle{ x_i }[/math]) and either the color, or the digit it represents ([math]\displaystyle{ y_i }[/math]). The goal is to recover the classification task ("color" or "digit") for each observation and construct the 2 classifiers for both tasks.

The second image classification data set is the Kaggle Fashion Product experiment. This data set has more observations than the "colored-MNIST" data and consists of pictures labelled with either the “Gender”, “Category”, and “Color” of the clothing item.

Metrics of Confusing Supervised Learning

Results

Data