Task Understanding from Confushing Multitask Data: Difference between revisions

From statwiki
Jump to navigation Jump to search
Line 41: Line 41:
=Experiment=
=Experiment=
==Setup==
==Setup==
Confusing data comes in the form of <math>(x_i,y_i),i=1,...,m<math> pairs. However, unlike typical regression problems, there are multiple <math>f_j(x),j=1,...,n<math> mapping functions, so the goal is to recover both the mapping functions <math>f_j<math> as well as determine which mapping function corresponds to each of the <math>m<math> observations.
Confusing data comes in the form of <math>(x_i,y_i),i=1,...,m<\math> pairs. However, unlike typical regression problems, there are multiple <math>f_j(x),j=1,...,n<\math> mapping functions, so the goal is to recover both the mapping functions <math>f_j<\math> as well as determine which mapping function corresponds to each of the <math>m<math> observations.

Revision as of 16:20, 15 November 2020

Task Understanding from Confusing Multi-task Data

Presented By aslkdfj;awekrf

1. Introduction

hialll

Hello

[math]\displaystyle{ \begin{align*} e & = \pi = \sqrt{g} \end{align*} }[/math]


2. Related Work

How does formatting of paragraphs work? hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi hi

[math]\displaystyle{ \begin{align*} e & = \text{Hellow}\\ & = \dfrac{123}{4}\\ \end{align*} }[/math]


[math]\displaystyle{ \begin{align*} h+1 & = \dfrac{abc}{\text{def}}\\ & = \dfrac{123}{4}\\ \end{align*} }[/math]


Experiment

Setup

Confusing data comes in the form of <math>(x_i,y_i),i=1,...,m<\math> pairs. However, unlike typical regression problems, there are multiple <math>f_j(x),j=1,...,n<\math> mapping functions, so the goal is to recover both the mapping functions <math>f_j<\math> as well as determine which mapping function corresponds to each of the <math>m<math> observations.