stat940F21: Difference between revisions
Jump to navigation
Jump to search
Line 58: | Line 58: | ||
|Week of Nov 16 || || 15|| || || || | |Week of Nov 16 || || 15|| || || || | ||
|- | |- | ||
|Week of Nov 16 || Cameron Meaney || 16|| Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations || [https:// | |Week of Nov 16 || Cameron Meaney || 16|| Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations || [https://www.sciencedirect.com/science/article/pii/S0021999118307125 Paper] || || | ||
|- | |- | ||
|Week of Nov 16 ||Sobhan Hemati|| 17||Adversarial Fisher Vectors for Unsupervised Representation Learning||[https://papers.nips.cc/paper/9295-adversarial-fisher-vectors-for-unsupervised-representation-learning.pdf Paper]|| || | |Week of Nov 16 ||Sobhan Hemati|| 17||Adversarial Fisher Vectors for Unsupervised Representation Learning||[https://papers.nips.cc/paper/9295-adversarial-fisher-vectors-for-unsupervised-representation-learning.pdf Paper]|| || |
Revision as of 07:58, 7 October 2020
Project Proposal
Record your contributions here [1]
Use the following notations:
P: You have written a summary/critique on the paper.
T: You had a technical contribution on a paper (excluding the paper that you present).
E: You had an editorial contribution on a paper (excluding the paper that you present).
Paper presentation
Date | Name | Paper number | Title | Link to the paper | Link to the summary | Link to the video |
Sep 15 (example) | Ri Wang | Sequence to sequence learning with neural networks. | Paper | Summary | [2] | |
Week of Nov 2 | 1 | |||||
Week of Nov 2 | 2 | |||||
Week of Nov 2 | 3 | |||||
Week of Nov 2 | 4 | |||||
Week of Nov 2 | 5 | |||||
Week of Nov 2 | 6 | |||||
Week of Nov 9 | 7 | |||||
Week of Nov 9 | 8 | |||||
Week of Nov 9 | 9 | |||||
Week of Nov 9 | 10 | |||||
Week of Nov 9 | 11 | |||||
Week of Nov 9 | 12 | |||||
Week of Nov 16 | 13 | |||||
Week of Nov 16 | 14 | |||||
Week of Nov 16 | 15 | |||||
Week of Nov 16 | Cameron Meaney | 16 | Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations | Paper | ||
Week of Nov 16 | Sobhan Hemati | 17 | Adversarial Fisher Vectors for Unsupervised Representation Learning | Paper | ||
Week of Nov 16 | Milad Sikaroudi | 18 | Domain Genralization via Model Agnostic Learning of Semantic Features | Paper | ||
Week of Nov 23 | Bowen You | 19 | DREAM TO CONTROL: LEARNING BEHAVIORS BY LATENT IMAGINATION | Paper | ||
Week of Nov 23 | Nouha Chatti | 20 | This Looks Like That: Deep Learning for Interpretable Image Recognition | Paper | ||
Week of Nov 23 | Mohan Wu | 21 | Pretrained Generalized Autoregressive Model with Adaptive Probabilistic Label Cluster for Extreme Multi-label Text Classification | Paper | ||
Week of Nov 23 | Xinyi Yan | 22 | Incorporating BERT into Neural Machine Translation | Paper | ||
Week of Nov 23 | Meixi Chen | 23 | Functional Regularisation for Continual Learning with Gaussian Processes | Paper | ||
Week of Nov 23 | Ahmed Salamah | 24 | Sparse Convolutional Neural Networks | Paper | ||
Week of Nov 30 | Danial Maleki | 25 | Attention Is All You Need | Paper | ||
Week of Nov 30 | Gursimran Singh | 26 | BERTScore: Evaluating Text Generation with BERT. | Paper | ||
Week of Nov 30 | Govind Sharma | 27 | Time-series Generative Adversarial Networks | Paper | ||
Week of Nov 30 | Maral Rasoolijaberi | 28 | Parameter-free, Dynamic, and Strongly-Adaptive Online Learning | Paper | ||
Week of Nov 30 | Sina Farsangi | 29 | A Baseline for Few-Shot Image Classification | Paper | ||
Week of Nov 30 | Pierre McWhannel | 30 | Pre-training Tasks for Embedding-based Large-scale Retrieval | Paper | placeholder |