stat946F18: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 31: | Line 31: | ||
|Nov 1 || Sriram Ganapathi Subramanian || 1||Differentiable plasticity: training plastic neural networks with backpropagation || [http://proceedings.mlr.press/v80/miconi18a.html Paper] | |Nov 1 || Sriram Ganapathi Subramanian || 1||Differentiable plasticity: training plastic neural networks with backpropagation || [http://proceedings.mlr.press/v80/miconi18a.html Paper] | ||
|- | |- | ||
|Nov 1 || Hadi Nekoei || 1|| Synthesizing Programs for Images using Reinforced Adversarial Learning || http://proceedings.mlr.press/v80/ganin18a.html || | |Nov 1 || Hadi Nekoei || 1|| Synthesizing Programs for Images using Reinforced Adversarial Learning || [http://proceedings.mlr.press/v80/ganin18a.html] || | ||
|- | |- | ||
|Nov 1 || Henry Chen || 1|| DeepVO: Towards end-to-end visual odometry with deep Recurrent Convolutional Neural Networks || [https://ieeexplore.ieee.org/abstract/document/7989236 Paper] || | |Nov 1 || Henry Chen || 1|| DeepVO: Towards end-to-end visual odometry with deep Recurrent Convolutional Neural Networks || [https://ieeexplore.ieee.org/abstract/document/7989236 Paper] || |
Revision as of 11:27, 7 October 2018
Project Proposal
Paper presentation
Date | Name | Paper number | Title | Link to the paper | Link to the summary |
Feb 15 (example) | Ri Wang | Sequence to sequence learning with neural networks. | Paper | Summary | |
Oct 25 | Dhruv Kumar | 2 | TBD | ||
Oct 25 | Shala Chen | 3 | |||
Oct 25 | Juan Carrillo | 4 | |||
Oct 30 | Manpreet Singh Minhas | 1 | |||
Oct 30 | Marvin Pafla | 2 | |||
Oct 30 | Glen Chalatov | 3 | TBD | ||
Oct 30 | Gaurav Sahu | 4 | TBD | ||
Nov 1 | Sriram Ganapathi Subramanian | 1 | Differentiable plasticity: training plastic neural networks with backpropagation | Paper | |
Nov 1 | Hadi Nekoei | 1 | Synthesizing Programs for Images using Reinforced Adversarial Learning | [1] | |
Nov 1 | Henry Chen | 1 | DeepVO: Towards end-to-end visual odometry with deep Recurrent Convolutional Neural Networks | Paper | |
Nov 1 | Amirpasha Ghabussi | 1 | |||
Nov 6 | Nargess Heydari | 2 | |||
Nov 6 | Aravind Ravi | 3 | |||
Nov 6 | Ki Beom Lee | ||||
Nov 6 | Ronald Feng | ||||
Nov 8 | Neel Bhatt | 1 | [TBD] | ||
Nov 8 | Jacob Manuel | 2 | |||
Nov 8 | Charupriya Sharma | 2 | |||
NOv 13 | Sagar Rajendran | 1 | Zero-Shot Visual Imitation | Paper | |
Nov 13 | Jiazhen Chen | 2 | |||
Nov 13 | Neil Budnarain | 2 | PixelNN: Example-Based Image Synthesis | Paper | |
Nov 13 | Kashif Khan | 2 | |||
NOv 15 | Zheng Ma | 3 | Reinforcement Learning of Theorem Proving | Paper | |
Nov 15 | Abdul Khader Naik | 4 | |||
Nov 15 | Johra Muhammad Moosa | 2 | |||
NOv 20 | Zahra Rezapour Siahgourabi | 19 | |||
Nov 20 | Shubham Koundinya | 6 | |||
Nov 20 | Salman Khan | Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples | paper | ||
NOv 22 | Soroush Ameli | 22 | |||
Nov 22 | Ivan Li | 23 | Overfitting or perfect fitting? Risk bounds for classification and regression rules that interpolate | Paper | |
Nov 22 | Sigeng Chen | 2 | |||
Nov 27 | Aileen Li | 8 | Spatially Transformed Adversarial Examples | Paper | |
NOv 27 | Xudong Peng | 9 | |||
Nov 27 | Xinyue Zhang | 10 | An Inference-Based Policy Gradient Method for Learning Options | Paper | |
NOv 29 | Junyi Zhang | 11 | |||
Nov 29 | Travis Bender | 12 | Automatic Goal Generation for Reinforcement Learning Agents | Paper | |
Nov 29 | Patrick Li | 12 | Near Optimal Frequent Directions for Sketching Dense and Sparse Matrices | Paper | |
Nov 29 | Ahmed Afify | 13 | Don't Decay the Learning Rate, Increase the Batch Size | Paper |