Learning Combinatorial Optimzation: Difference between revisions
No edit summary |
No edit summary |
||
Line 41: | Line 41: | ||
== Conclusions == | == Conclusions == | ||
The machine learning framework the authors propose is a solution to NP-hard graph optimization problems that have a large amount of instances that need to be computed. Where the problem structure remains largely the same except for specific data values. Such cases are common in the industry where large tech companies have to process millions of requests per second and can afford to invest in expensive pre-computation if it speeds up real-time individual requests. Through their experiments and performance results the paper has shown that their solution could potentially lead to faster development and increased runtime efficiency of algorithms for graph problems. | |||
== Source == | == Source == | ||
Hanjun Dai, Elias B. Khalil, Yuyu Zhang, Bistra Dilkina, Le Song. Learning Combinatorial Optimization Algorithms over Graphs. In Neural Information Processing Systems, 2017 | Hanjun Dai, Elias B. Khalil, Yuyu Zhang, Bistra Dilkina, Le Song. Learning Combinatorial Optimization Algorithms over Graphs. In Neural Information Processing Systems, 2017 |
Revision as of 01:41, 20 March 2018
Learning Combinatorial Optimization Algorithms Over Graphs
Group Members
Abhi (Graph Theory),
Alvin (Reinforcement Learning/actual paper)
Pranav (actual paper),
Daniel (Conclusion: performance, adv, disadv, criticism)
Introduction and Problem Motivation
1) Graph Theory (MLP, TSP, Maxcut) - Common Problems to Solve are: Minimum Vertex Cover: Given a ‘graph’ G, find the minimum number of vertices to tick, so that every single edge is covered. G=(V,E,w). Where G is the Graph, V are the vertices, E is the edge, and w is the set of weights for the edges
Maximum Cut: Given a ‘graph’ G,
Travelling Salesman Problem
2) Reinforcement Learning - The core concept of Reinforcement Learning is to consider a partially observable Markov Decision Process, and a A Markov decision process is a 5-tuple [math]\displaystyle{ (S,A,P_\cdot(\cdot,\cdot),R_\cdot(\cdot,\cdot),\gamma) }[/math], where
- [math]\displaystyle{ S }[/math] is a finite set of states (they do not have to be, but for the purpose of this paper, we assume for it to be),
- [math]\displaystyle{ A }[/math] is a finite set of actions (generally only feasible actions) (alternatively, [math]\displaystyle{ A_s }[/math] is the finite set of actions available from state [math]\displaystyle{ s }[/math]),
- [math]\displaystyle{ P_a(s,s') = \Pr(s_{t+1}=s' \mid s_t = s, a_t=a) }[/math] is the probability that action [math]\displaystyle{ a }[/math] in state [math]\displaystyle{ s }[/math] at time [math]\displaystyle{ t }[/math] will lead to state [math]\displaystyle{ s' }[/math] at time [math]\displaystyle{ t+1 }[/math],
- [math]\displaystyle{ R_a(s,s') }[/math] is the immediate reward (or expected immediate reward) received after transitioning from state [math]\displaystyle{ s }[/math] to state [math]\displaystyle{ s' }[/math], due to action [math]\displaystyle{ a }[/math], furthermore, it is between two consecutive time periods
- [math]\displaystyle{ \gamma \in [0,1] }[/math] is the discount factor, which represents the difference in importance between future rewards and present rewards.
In Reinforcement Learning, the rules are generally stochastic, which means that we associate a probability with choosing an action as opposed to deterministic choice of an action. Some other talks have elucidated about this, however, in detail, the idea is that, to maintain exploration-exploitation tradeoffs it's a good idea to have a list of probabilities as opposed to random values.
Model
Criticism
(Performance, advantages, disadvantages): A3C? S2V?
Conclusions
The machine learning framework the authors propose is a solution to NP-hard graph optimization problems that have a large amount of instances that need to be computed. Where the problem structure remains largely the same except for specific data values. Such cases are common in the industry where large tech companies have to process millions of requests per second and can afford to invest in expensive pre-computation if it speeds up real-time individual requests. Through their experiments and performance results the paper has shown that their solution could potentially lead to faster development and increased runtime efficiency of algorithms for graph problems.
Source
Hanjun Dai, Elias B. Khalil, Yuyu Zhang, Bistra Dilkina, Le Song. Learning Combinatorial Optimization Algorithms over Graphs. In Neural Information Processing Systems, 2017