stat441w18/Convolutional Neural Networks for Sentence Classification: Difference between revisions

From statwiki
Jump to navigation Jump to search
Line 21: Line 21:
=== Theory of Convolutional Neural Networks ===
=== Theory of Convolutional Neural Networks ===


Let <math> \boldsymbol{x}_{i:i+j} </math> be the concatenation of k-dimensional words <math> \boldsymbol{x}_i, \boldsymbol{x}_{i+1}, \dots, \boldsymbol{x}_{i+j} </math>. Then, a sentence of length <math> n </math> is the concatenation of k-dimensional words <math> \boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_n </math>,  represented as <math> \boldsymbol{x}_{1:n} </math>, <math> \boldsymbol{x}_{1:n} = \boldsymbol{x}_1 \oplus \boldsymbol{x}_2 \oplus \dots \oplus \boldsymbol{x}_n </math>, where <math> \oplus </math> is the concatenation operation.
Let <math> \boldsymbol{x}_{i:i+j} </math> be the concatenation of k-dimensional words <math> \boldsymbol{x}_i, \boldsymbol{x}_{i+1}, \dots, \boldsymbol{x}_{i+j} </math>. Then, a sentence of length <math> n </math> is the concatenation of k-dimensional words <math> \boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_n </math>,  represented as <math> \boldsymbol{x}_{1:n} </math>, <math> \boldsymbol{x}_{1:n} = \boldsymbol{x}_1 \oplus \boldsymbol{x}_2 \oplus \dots \oplus \boldsymbol{x}_n </math>, where <math> \oplus </math> is the concatenation operation. Let <math> \boldsymbol{x}_i </math> denote the <math> i </math>-th word in this sentence.


A Convolutional Neural Network (CNN) is a nonlinear function <math> \boldsymbol{f}: \mathbb{R}^{hk} \to \mathbb{R} </math> that computes a series of outputs <math> c_i </math> from a concatenation of words <math> \boldsymbol{x}_i, \boldsymbol{x}_{i+1}, \dots, \boldsymbol{x}_{i+h-1} </math>, represented by <math> \boldsymbol{x}_{i:i+h-1} </math>
A Convolutional Neural Network (CNN) is a nonlinear function <math> \boldsymbol{f}: \mathbb{R}^{hk} \to \mathbb{R} </math> that computes a series of outputs <math> c_i </math> from a concatenation of words <math> \boldsymbol{x}_i, \boldsymbol{x}_{i+1}, \dots, \boldsymbol{x}_{i+h-1} </math>, represented by <math> \boldsymbol{x}_{i:i+h-1} </math>

Revision as of 18:03, 4 March 2018

Presented by

1. Ben Schwarz

2. Cameron Miller

3. Hamza Mirza

4. Pavle Mihajlovic

5. Terry Shi

6. Yitian Wu

7. Zekai Shao

Introduction

Model

Theory of Convolutional Neural Networks

Let [math]\displaystyle{ \boldsymbol{x}_{i:i+j} }[/math] be the concatenation of k-dimensional words [math]\displaystyle{ \boldsymbol{x}_i, \boldsymbol{x}_{i+1}, \dots, \boldsymbol{x}_{i+j} }[/math]. Then, a sentence of length [math]\displaystyle{ n }[/math] is the concatenation of k-dimensional words [math]\displaystyle{ \boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_n }[/math], represented as [math]\displaystyle{ \boldsymbol{x}_{1:n} }[/math], [math]\displaystyle{ \boldsymbol{x}_{1:n} = \boldsymbol{x}_1 \oplus \boldsymbol{x}_2 \oplus \dots \oplus \boldsymbol{x}_n }[/math], where [math]\displaystyle{ \oplus }[/math] is the concatenation operation. Let [math]\displaystyle{ \boldsymbol{x}_i }[/math] denote the [math]\displaystyle{ i }[/math]-th word in this sentence.

A Convolutional Neural Network (CNN) is a nonlinear function [math]\displaystyle{ \boldsymbol{f}: \mathbb{R}^{hk} \to \mathbb{R} }[/math] that computes a series of outputs [math]\displaystyle{ c_i }[/math] from a concatenation of words [math]\displaystyle{ \boldsymbol{x}_i, \boldsymbol{x}_{i+1}, \dots, \boldsymbol{x}_{i+h-1} }[/math], represented by [math]\displaystyle{ \boldsymbol{x}_{i:i+h-1} }[/math]

Model Regularization

Datasets and Experimental Setup

Hyperparameters and Training

MR:

SST-1:

SST-2:

Subj:

TREC:

CR:

MPQA:

Pre-trained Word Vectors
Model Variations

CNN-rand:

CNN-static:

CNN-static:

CNN-non-static:

CNN-multichannel:

Training and Results

Criticisms

More Formulations/New Concepts

Conclusion

Source