mULTIPLE OBJECT RECOGNITION WITH VISUAL ATTENTION: Difference between revisions

From statwiki
Jump to navigation Jump to search
(Created page with "= Introduction = Recognizing multiple objects in images has been one of the most important goals of computer vision. In this paper an attention-based model for recognizing multi...")
 
No edit summary
Line 9: Line 9:


For simplicity, they first describe how our model can be applied to classifying a single object and later show how it can be extended to multiple objects. Processing an image x with an attention based model is a sequential process with N steps, where each step consists of a glimpse. At each step n, the model receives a location ln along with a glimpse observation xn taken at location ln. The model uses the observation to update its internal state and outputs the location ln+1 to process at the next time-step. A graphical representation of the proposed model is shown in Figure 1.
For simplicity, they first describe how our model can be applied to classifying a single object and later show how it can be extended to multiple objects. Processing an image x with an attention based model is a sequential process with N steps, where each step consists of a glimpse. At each step n, the model receives a location ln along with a glimpse observation xn taken at location ln. The model uses the observation to update its internal state and outputs the location ln+1 to process at the next time-step. A graphical representation of the proposed model is shown in Figure 1.
[[File:fig0ne.PNG | center]]
The above model can be broken down into a number of sub-components, each mapping some input into a vector output. In this paper the term “network” is used to describe these sub-components.
== Glimpse Network:==
The job of the glimpse network is to extract a set of useful features from location of a glimpse of the raw visual input. The glimpse network is a non-linear function that receives the current input image patch, or glimpse (xn), and its location tuple (ln) as input and outputs a vector showing that what location has what features.
There are two separate networks in the structure of glimpse network, each of which has its own input. The first one which extracts features of the image patch takes an image patch as input and consists of three convolutional hidden layers without any pooling layers followed by a fully connected layer. Separately, the location tuple is mapped using a fully connected hidden layer. Then element-wise multiplication of two output vectors produces the final glimpse feature vector (gn).
== Recurrent Network:==
The recurrent network aggregates information extracted from the individual glimpses and combines the information in a coherent manner that preserves spatial information. The glimpse feature vector gn from the glimpse network is supplied as input to the recurrent network at each time step.
The recurrent network consists of two recurrent layers. Two outputs of the recurrent layers are defined as r(1) and r(2).
== Emission Network:==
The emission network takes the current state of recurrent network as input and makes a prediction on where to extract the next image patch for the glimpse network. It acts as a controller that directs attention based on the current internal states from the recurrent network. It consists of a fully connected hidden layer that maps the feature vector r(2) n from the top recurrent layer to a coordinate tuple^ln+1.
== Context Network: ==
The context network provides the initial state for the recurrent network and its output is used by the emission network to predict the location of the first glimpse. The context network C(.) takes a down-sampled low-resolution version of the whole input image Icoarse and outputs a fixed length vector cI . The contextual information provides sensible hints on where the potentially interesting regions are in a given image. The context network employs three convolutional layers that map a coarse image Icoarse to a feature vector.
== Classification Network:==
The classification network outputs a prediction for the class label y based on the final feature vector r(1)N of the lower recurrent layer. The classification network has one fully connected hidden layer and a softmax output layer for the class y.
In order to prevent the model to learn from contextual information than by combining information from different glimpses, the context network and classification network are connected to different recurrent layers in the deep model. This will help the deep recurrent attention model learn to look at locations that are relevant for classifying objects of interest.
= Learning Where and What=
Given the class labels y of image “I”, learning can be formulated as a supervised classification problem with the cross entropy objective function. The attention model predicts the class label conditioned on intermediate latent location variables l from each glimpse and extracts the corresponding patches. We can thus maximize likelihood of the class label by marginalizing over the glimpse locations.

Revision as of 00:53, 27 November 2015

Introduction

Recognizing multiple objects in images has been one of the most important goals of computer vision. In this paper an attention-based model for recognizing multiple objects in images is presented. The proposed model is a deep recurrent neural network trained with reinforcement learning to attend to the most relevant regions of the input image. It has been shown that the proposed method is more accurate than the state-of-the-art convolutional networks and uses fewer parameters and less computation.

One of the main drawbacks of convolutional networks (ConvNets) is their poor scalability with increasing input image size so efficient implementations of these models have become necessary. In this work, the authors take inspiration from the way humans perform visual sequence recognition tasks such as reading by continually moving the fovea to the next relevant object or character, recognizing the individual object, and adding the recognized object to our internal representation of the sequence. The proposed system is a deep recurrent neural network that at each step processes a multi-resolution crop of the input image, called a “glimpse”. The network uses information from the glimpse to update its internal representation of the input, and outputs the next glimpse location and possibly the next object in the sequence. The process continues until the model decides that there are no more objects to process.

Deep Recurrent Visual Attention Model:

For simplicity, they first describe how our model can be applied to classifying a single object and later show how it can be extended to multiple objects. Processing an image x with an attention based model is a sequential process with N steps, where each step consists of a glimpse. At each step n, the model receives a location ln along with a glimpse observation xn taken at location ln. The model uses the observation to update its internal state and outputs the location ln+1 to process at the next time-step. A graphical representation of the proposed model is shown in Figure 1.

File:fig0ne.PNG

The above model can be broken down into a number of sub-components, each mapping some input into a vector output. In this paper the term “network” is used to describe these sub-components.

Glimpse Network:

The job of the glimpse network is to extract a set of useful features from location of a glimpse of the raw visual input. The glimpse network is a non-linear function that receives the current input image patch, or glimpse (xn), and its location tuple (ln) as input and outputs a vector showing that what location has what features. 

There are two separate networks in the structure of glimpse network, each of which has its own input. The first one which extracts features of the image patch takes an image patch as input and consists of three convolutional hidden layers without any pooling layers followed by a fully connected layer. Separately, the location tuple is mapped using a fully connected hidden layer. Then element-wise multiplication of two output vectors produces the final glimpse feature vector (gn).

Recurrent Network:

The recurrent network aggregates information extracted from the individual glimpses and combines the information in a coherent manner that preserves spatial information. The glimpse feature vector gn from the glimpse network is supplied as input to the recurrent network at each time step. The recurrent network consists of two recurrent layers. Two outputs of the recurrent layers are defined as r(1) and r(2).

Emission Network:

The emission network takes the current state of recurrent network as input and makes a prediction on where to extract the next image patch for the glimpse network. It acts as a controller that directs attention based on the current internal states from the recurrent network. It consists of a fully connected hidden layer that maps the feature vector r(2) n from the top recurrent layer to a coordinate tuple^ln+1.

Context Network:

The context network provides the initial state for the recurrent network and its output is used by the emission network to predict the location of the first glimpse. The context network C(.) takes a down-sampled low-resolution version of the whole input image Icoarse and outputs a fixed length vector cI . The contextual information provides sensible hints on where the potentially interesting regions are in a given image. The context network employs three convolutional layers that map a coarse image Icoarse to a feature vector.

Classification Network:

The classification network outputs a prediction for the class label y based on the final feature vector r(1)N of the lower recurrent layer. The classification network has one fully connected hidden layer and a softmax output layer for the class y.

In order to prevent the model to learn from contextual information than by combining information from different glimpses, the context network and classification network are connected to different recurrent layers in the deep model. This will help the deep recurrent attention model learn to look at locations that are relevant for classifying objects of interest.

Learning Where and What

Given the class labels y of image “I”, learning can be formulated as a supervised classification problem with the cross entropy objective function. The attention model predicts the class label conditioned on intermediate latent location variables l from each glimpse and extracts the corresponding patches. We can thus maximize likelihood of the class label by marginalizing over the glimpse locations.