stat841f11: Difference between revisions
(Created page with "== Editor Sign Up==") |
(841 lecture - 2011/09/20 - initial submission) |
||
Line 1: | Line 1: | ||
= STAT 441/841 / CM 463/763 - Tuesday, 2011/09/20 = | |||
== Wiki Course Notes == | |||
Students will need to contribute to the wiki for 20% of their grade. | |||
Access via wikicoursenote.com | |||
Go to editor sign-up, and use your UW userid for your account name, and use your UW email. | |||
primary (10%) | |||
Post a draft of lecture notes within 48 hours. | |||
You will need to do this 1 or 2 times, depending on class size. | |||
secondary (10%) | |||
Make improvements to the notes for at least 60% of the lectures. | |||
More than half of your contributions should be technical rather than editorial. | |||
There will be a spreadsheet where students can indicate what they've done and when. | |||
The instructor will conduct random spot checks to ensure that students have contributed what they claim. | |||
== Classification == | |||
=== definitions === | |||
'''classification''': Predict a discrete random variable <math>Y</math> by using another random variable <math>X</math> | |||
iid | |||
<math>X_i = (X_{i1}, X_{i2}, ... X_{id}) \in \mathcal{X} \subset \mathbb{R}^d</math> (<math>d</math>-dimensional vector) | |||
<math>Y_i</math> in some finite set <math>\mathcal{Y}</math> | |||
'''classification rule''': | |||
<math>h : \mathcal{X} \rightarrow \mathcal{Y}</math> | |||
Take new observation <math>X</math> and make new <math>Y</math> prediction <math>h(X)</math>. | |||
Example: an image (2-d), which can be represented by a long vector <math>\mathbf{X}</math> | |||
'''true error rate''' for classifier <math>h</math> | |||
<math>L(h) = (P(h(X) \neq Y )</math> | |||
'''empirical error rate''' (or training error rate) | |||
<math>\hat{L}_n(h) = (1/n) \sum_{i=1}^{n} I(h(X_i) \neq Y_i)</math> | |||
where <math>I()</math> indicates misclassification, i.e., | |||
<math>I = 1 \ \rightarrow \ h()</math> misclassifies this <math>X</math> | |||
<math>I = 0 \ \rightarrow \ h()</math> does not misclassify this <math>X</math> | |||
e.g., 100 new data points with known (true) labels | |||
<math>y_1 = h(x_1)</math> | |||
... | |||
<math>y_{100} = h(x_{100})</math> | |||
compare the known-true against the classified-true, count, divide by n=100 | |||
=== Bayes Classifier === | |||
First recall Bayes' Rule, in the format | |||
<math>P(Y|X) = \frac{P(X|Y) P(Y)} {P(X)} </math> | |||
P(Y|X) : ''posterior'' | |||
P(X|Y) : ''likelihood'' | |||
P(Y) : ''prior'' | |||
P(X) : ''marginal'' | |||
We will start with the simplest case: <math>\mathcal{Y} = \{0,1\}</math> | |||
<math>r(x) = P(Y=1|X=x)</math> | |||
<math> = \frac{P(X=x|Y=1) P(Y=1)} {P(X=x)}</math> | |||
<math> = \frac{P(X=x|Y=1) P(Y=1)} {P(X=x|Y=1) P(Y=1) + P(X=x|Y=0) P(Y=0)}</math> | |||
Which of the following do we prefer to work with, | |||
* P(Y=1|X=x) or | |||
* P(X=x|Y=1) ? | |||
The former reflects a ''Bayesian'' approach - degree of belief. So, Y is not a RV. | |||
The latter reflects a ''frequentist'' approach - frequency (of observation). | |||
(Ease of computation and validity were proposed and discussed by students.) | |||
The question remains unresolved. | |||
The Bayes Classifier uses <math>P(Y=1|X=x)</math> | |||
<math> P(Y=1|X=x) = \frac{P(X=x|Y=1) P(Y=1)} {P(X=x|Y=1) P(Y=1) + P(X=x|Y=0) P(Y=0)}</math> | |||
P(Y=1) : the prior, based on belief/evidence beforehand | |||
denominator : marginalized by summation | |||
<math>h(x) = | |||
\begin{cases} | |||
1 \ \ \hat{r}(x) > 1/2 \\ | |||
0 \ \ otherwise | |||
\end{cases} | |||
</math> | |||
The set <math>\mathcal{D}(h) = \{ x : P(Y=1|X=x) = P(Y=0|X=x)... \} </math> | |||
which defines a ''decision boundary''. | |||
''Theorem'': Bayes rule is optimal. I.e., if h is any other classification rule, | |||
then <math>L(h^*) <= L(h)</math> | |||
(This is to be proved in homework.) | |||
Therefore, Why do we need any other method? | |||
A: Because X densities are often/typically unknown. I.e., <math>f_k(x)</math> and/or <math>\pi_k</math> unknown. | |||
<math>P(Y=k|X=x) = \frac{P(X=x|Y=k) ...} {...} = \frac{f_k(x) \pi_k} {\sum_k f_k(x) \pi_k}</math> | |||
f_k(x) is referred to as the class conditional distribution (~likelihood). | |||
Therefore, we rely on some data to estimate quantities. | |||
=== Three Main Approaches === | |||
'''1. Empirical Risk Minimization''': | |||
Choose a set of classifier H (e.g., line, neural network) and find <math>h^* \in H</math> | |||
that minimizes (some estimate of) L(h). | |||
'''2. Regression''': | |||
Find an estimate (<math>\hat{r}</math>) of function <math>r</math> and define | |||
<math>h(x) = | |||
\begin{cases} | |||
1 \ \ \hat{r}(x) > 1/2 \\ | |||
0 \ \ otherwise | |||
\end{cases} | |||
</math> | |||
The problem is more difficult, because of restricted domain (discrete label values). | |||
'''3. Density Estimation''': | |||
Estimate <math>P(X=x|Y=0)</math> from <math>X_i</math>'s for which <math>Y_i = 0</math> | |||
Estimate <math>P(X=x|Y=1)</math> from <math>X_i</math>'s for which <math>Y_i = 1</math> | |||
and let <math>P(Y=?) = (1/n) \sum_{i=1}^{n} Y_i</math> | |||
Define <math>\hat{r}(x) = \hat{P}(Y=1|X=x)</math> and | |||
<math>h(x) = | |||
\begin{cases} | |||
1 \ \ \hat{r}(x) > 1/2 \\ | |||
0 \ \ otherwise | |||
\end{cases} | |||
</math> | |||
Problems? | |||
not enough data to estimate? - possibly | |||
high error rate? | |||
big one: not good in high-dimensional space | |||
As the dimension of the space goes up, the learning requirements go up exponentially. | |||
=== Multi-Class Classification === | |||
Generalize to case Y takes on k>2 values. | |||
''Theorem'': <math>Y \in \mathcal{Y} = {1,2,..., k}</math> optimal rule | |||
<math>h*(x) = argmax_k P</math> | |||
where <math>P(Y=k|X=x) = \frac{f_k(x) \pi_k} {\sum ...}</math> | |||
== LDA and QDA == | |||
(linear discriminant analysis, and quadratic discriminant analysis) | |||
Simplest: Use approach 3 (above) and assume a parametric model for densities. | |||
Assume class conditional is Gaussian. | |||
LDA (also known as FDA (Fisher's), which is in fact not really the same thing) | |||
<math>\mathcal{Y} = \{ 0,1 \}</math> assumed (i.e., 2 labels) | |||
<math>h(x) = | |||
\begin{cases} | |||
1 \ \ P(Y=1|X=x) > P(Y=0|X=x) \\ | |||
0 \ \ otherwise | |||
\end{cases} | |||
</math> | |||
<math>P(Y=1|X=x) = \frac{f_1(x) \pi_1} {\sum_k f_k \pi_k} \ \ </math> (denom = P(x)) | |||
1) Assume Gaussian distributions | |||
<math>f_k(x) = [(2\pi)^{-d/2} |\Sigma_k|^{-1/2}] exp(-(1/2)(\mathbf{x} - \mathbf{\mu_k}) \Sigma_k^{-1}(\mathbf{x}-\mathbf{\mu_k}) )</math> | |||
must compare | |||
<math>\frac{f_1(x) \pi_1} {p(x)} with \frac{f_0(x) \pi_0} {p(x)}</math> | |||
Note that the p(x) denom can be ignored: | |||
<math>f_1(x) \pi_1</math> with <math>f_0(x) \pi_0 </math> | |||
To find the decision boundary, set | |||
<math>f_1(x) \pi_1 = f_0(x) \pi_0 </math> | |||
Because we are assuming <math>\Sigma_1 = \Sigma_0</math>, we can use <math>\Sigma = \Sigma_0 = \Sigma_1</math>. | |||
Cancel <math>(2\pi)^{-d/2} |\Sigma_k|^{-1/2}</math> from both sides. | |||
Take log of both sides. | |||
Subtract one side from both sides, leaving zero on one side. | |||
<math>-(1/2)(\mathbf{x} - \mathbf{\mu_1})^T \Sigma^{-1} (\mathbf{x}-\mathbf{\mu_1}) + log(\pi_1) - [-(1/2)(\mathbf{x} - \mathbf{\mu_0})^T \Sigma^{-1} (\mathbf{x}-\mathbf{\mu_0}) + log(\pi_0)] = 0 </math> | |||
<math>(1/2)[-\mathbf{x}^T \Sigma^{-1} - \mathbf{\mu_1}^T \Sigma^{-1} \mathbf{\mu_1} + 2\mathbf{\mu_1}^T \Sigma^{-1} \mathbf{x} | |||
+ \mathbf{x}^T \Sigma^{-1} + \mathbf{\mu_0}^T \Sigma^{-1} \mathbf{\mu_0} - 2\mathbf{\mu_0}^T \Sigma^{-1} \mathbf{x} ] | |||
+ log(\pi_1/\pi_0) = 0 </math> | |||
Which reduces to | |||
<math>(1/2)[\mathbf{\mu_1}^T \Sigma^{-1} \mathbf{\mu_1} + \mathbf{\mu_0}^T \Sigma^{-1} \mathbf{\mu_0} | |||
+ (2\mathbf{\mu_1}^T \Sigma^{-1} - 2\mathbf{\mu_1}^T \Sigma^{-1}) \mathbf{x}] | |||
+ log(\pi_1/\pi_0) = 0 </math> | |||
And we see that the first pair of terms is constant, and the second pair is linear on x. | |||
So that we end up with something of the form | |||
<math>ax + b = 0</math>. | |||
[[User:Jgpitt|Jgpitt]] - 2011/09/21 | |||
==[[f11Stat841EditorSignUp| Editor Sign Up]]== | ==[[f11Stat841EditorSignUp| Editor Sign Up]]== |
Revision as of 15:41, 21 September 2011
STAT 441/841 / CM 463/763 - Tuesday, 2011/09/20
Wiki Course Notes
Students will need to contribute to the wiki for 20% of their grade. Access via wikicoursenote.com Go to editor sign-up, and use your UW userid for your account name, and use your UW email.
primary (10%) Post a draft of lecture notes within 48 hours. You will need to do this 1 or 2 times, depending on class size.
secondary (10%) Make improvements to the notes for at least 60% of the lectures. More than half of your contributions should be technical rather than editorial. There will be a spreadsheet where students can indicate what they've done and when. The instructor will conduct random spot checks to ensure that students have contributed what they claim.
Classification
definitions
classification: Predict a discrete random variable [math]\displaystyle{ Y }[/math] by using another random variable [math]\displaystyle{ X }[/math] iid
[math]\displaystyle{ X_i = (X_{i1}, X_{i2}, ... X_{id}) \in \mathcal{X} \subset \mathbb{R}^d }[/math] ([math]\displaystyle{ d }[/math]-dimensional vector) [math]\displaystyle{ Y_i }[/math] in some finite set [math]\displaystyle{ \mathcal{Y} }[/math]
classification rule:
[math]\displaystyle{ h : \mathcal{X} \rightarrow \mathcal{Y} }[/math]
Take new observation [math]\displaystyle{ X }[/math] and make new [math]\displaystyle{ Y }[/math] prediction [math]\displaystyle{ h(X) }[/math].
Example: an image (2-d), which can be represented by a long vector [math]\displaystyle{ \mathbf{X} }[/math]
true error rate for classifier [math]\displaystyle{ h }[/math]
[math]\displaystyle{ L(h) = (P(h(X) \neq Y ) }[/math]
empirical error rate (or training error rate)
[math]\displaystyle{ \hat{L}_n(h) = (1/n) \sum_{i=1}^{n} I(h(X_i) \neq Y_i) }[/math]
where [math]\displaystyle{ I() }[/math] indicates misclassification, i.e.,
[math]\displaystyle{ I = 1 \ \rightarrow \ h() }[/math] misclassifies this [math]\displaystyle{ X }[/math]
[math]\displaystyle{ I = 0 \ \rightarrow \ h() }[/math] does not misclassify this [math]\displaystyle{ X }[/math]
e.g., 100 new data points with known (true) labels
[math]\displaystyle{ y_1 = h(x_1) }[/math]
...
[math]\displaystyle{ y_{100} = h(x_{100}) }[/math]
compare the known-true against the classified-true, count, divide by n=100
Bayes Classifier
First recall Bayes' Rule, in the format [math]\displaystyle{ P(Y|X) = \frac{P(X|Y) P(Y)} {P(X)} }[/math]
P(Y|X) : posterior
P(X|Y) : likelihood
P(Y) : prior
P(X) : marginal
We will start with the simplest case: [math]\displaystyle{ \mathcal{Y} = \{0,1\} }[/math]
[math]\displaystyle{ r(x) = P(Y=1|X=x) }[/math] [math]\displaystyle{ = \frac{P(X=x|Y=1) P(Y=1)} {P(X=x)} }[/math] [math]\displaystyle{ = \frac{P(X=x|Y=1) P(Y=1)} {P(X=x|Y=1) P(Y=1) + P(X=x|Y=0) P(Y=0)} }[/math]
Which of the following do we prefer to work with,
- P(Y=1|X=x) or
- P(X=x|Y=1) ?
The former reflects a Bayesian approach - degree of belief. So, Y is not a RV. The latter reflects a frequentist approach - frequency (of observation). (Ease of computation and validity were proposed and discussed by students.)
The question remains unresolved.
The Bayes Classifier uses [math]\displaystyle{ P(Y=1|X=x) }[/math]
[math]\displaystyle{ P(Y=1|X=x) = \frac{P(X=x|Y=1) P(Y=1)} {P(X=x|Y=1) P(Y=1) + P(X=x|Y=0) P(Y=0)} }[/math]
P(Y=1) : the prior, based on belief/evidence beforehand
denominator : marginalized by summation
[math]\displaystyle{ h(x) = \begin{cases} 1 \ \ \hat{r}(x) \gt 1/2 \\ 0 \ \ otherwise \end{cases} }[/math]
The set [math]\displaystyle{ \mathcal{D}(h) = \{ x : P(Y=1|X=x) = P(Y=0|X=x)... \} }[/math]
which defines a decision boundary.
Theorem: Bayes rule is optimal. I.e., if h is any other classification rule,
then [math]\displaystyle{ L(h^*) \lt = L(h) }[/math]
(This is to be proved in homework.)
Therefore, Why do we need any other method? A: Because X densities are often/typically unknown. I.e., [math]\displaystyle{ f_k(x) }[/math] and/or [math]\displaystyle{ \pi_k }[/math] unknown.
[math]\displaystyle{ P(Y=k|X=x) = \frac{P(X=x|Y=k) ...} {...} = \frac{f_k(x) \pi_k} {\sum_k f_k(x) \pi_k} }[/math] f_k(x) is referred to as the class conditional distribution (~likelihood).
Therefore, we rely on some data to estimate quantities.
Three Main Approaches
1. Empirical Risk Minimization: Choose a set of classifier H (e.g., line, neural network) and find [math]\displaystyle{ h^* \in H }[/math] that minimizes (some estimate of) L(h).
2. Regression: Find an estimate ([math]\displaystyle{ \hat{r} }[/math]) of function [math]\displaystyle{ r }[/math] and define [math]\displaystyle{ h(x) = \begin{cases} 1 \ \ \hat{r}(x) \gt 1/2 \\ 0 \ \ otherwise \end{cases} }[/math]
The problem is more difficult, because of restricted domain (discrete label values).
3. Density Estimation: Estimate [math]\displaystyle{ P(X=x|Y=0) }[/math] from [math]\displaystyle{ X_i }[/math]'s for which [math]\displaystyle{ Y_i = 0 }[/math] Estimate [math]\displaystyle{ P(X=x|Y=1) }[/math] from [math]\displaystyle{ X_i }[/math]'s for which [math]\displaystyle{ Y_i = 1 }[/math] and let [math]\displaystyle{ P(Y=?) = (1/n) \sum_{i=1}^{n} Y_i }[/math]
Define [math]\displaystyle{ \hat{r}(x) = \hat{P}(Y=1|X=x) }[/math] and [math]\displaystyle{ h(x) = \begin{cases} 1 \ \ \hat{r}(x) \gt 1/2 \\ 0 \ \ otherwise \end{cases} }[/math]
Problems?
not enough data to estimate? - possibly
high error rate?
big one: not good in high-dimensional space
As the dimension of the space goes up, the learning requirements go up exponentially.
Multi-Class Classification
Generalize to case Y takes on k>2 values.
Theorem: [math]\displaystyle{ Y \in \mathcal{Y} = {1,2,..., k} }[/math] optimal rule
[math]\displaystyle{ h*(x) = argmax_k P }[/math]
where [math]\displaystyle{ P(Y=k|X=x) = \frac{f_k(x) \pi_k} {\sum ...} }[/math]
LDA and QDA
(linear discriminant analysis, and quadratic discriminant analysis)
Simplest: Use approach 3 (above) and assume a parametric model for densities. Assume class conditional is Gaussian.
LDA (also known as FDA (Fisher's), which is in fact not really the same thing)
[math]\displaystyle{ \mathcal{Y} = \{ 0,1 \} }[/math] assumed (i.e., 2 labels)
[math]\displaystyle{ h(x) = \begin{cases} 1 \ \ P(Y=1|X=x) \gt P(Y=0|X=x) \\ 0 \ \ otherwise \end{cases} }[/math]
[math]\displaystyle{ P(Y=1|X=x) = \frac{f_1(x) \pi_1} {\sum_k f_k \pi_k} \ \ }[/math] (denom = P(x))
1) Assume Gaussian distributions
[math]\displaystyle{ f_k(x) = [(2\pi)^{-d/2} |\Sigma_k|^{-1/2}] exp(-(1/2)(\mathbf{x} - \mathbf{\mu_k}) \Sigma_k^{-1}(\mathbf{x}-\mathbf{\mu_k}) ) }[/math]
must compare [math]\displaystyle{ \frac{f_1(x) \pi_1} {p(x)} with \frac{f_0(x) \pi_0} {p(x)} }[/math] Note that the p(x) denom can be ignored: [math]\displaystyle{ f_1(x) \pi_1 }[/math] with [math]\displaystyle{ f_0(x) \pi_0 }[/math]
To find the decision boundary, set [math]\displaystyle{ f_1(x) \pi_1 = f_0(x) \pi_0 }[/math]
Because we are assuming [math]\displaystyle{ \Sigma_1 = \Sigma_0 }[/math], we can use [math]\displaystyle{ \Sigma = \Sigma_0 = \Sigma_1 }[/math].
Cancel [math]\displaystyle{ (2\pi)^{-d/2} |\Sigma_k|^{-1/2} }[/math] from both sides.
Take log of both sides.
Subtract one side from both sides, leaving zero on one side.
[math]\displaystyle{ -(1/2)(\mathbf{x} - \mathbf{\mu_1})^T \Sigma^{-1} (\mathbf{x}-\mathbf{\mu_1}) + log(\pi_1) - [-(1/2)(\mathbf{x} - \mathbf{\mu_0})^T \Sigma^{-1} (\mathbf{x}-\mathbf{\mu_0}) + log(\pi_0)] = 0 }[/math]
[math]\displaystyle{ (1/2)[-\mathbf{x}^T \Sigma^{-1} - \mathbf{\mu_1}^T \Sigma^{-1} \mathbf{\mu_1} + 2\mathbf{\mu_1}^T \Sigma^{-1} \mathbf{x}
+ \mathbf{x}^T \Sigma^{-1} + \mathbf{\mu_0}^T \Sigma^{-1} \mathbf{\mu_0} - 2\mathbf{\mu_0}^T \Sigma^{-1} \mathbf{x} ]
+ log(\pi_1/\pi_0) = 0 }[/math]
Which reduces to
[math]\displaystyle{ (1/2)[\mathbf{\mu_1}^T \Sigma^{-1} \mathbf{\mu_1} + \mathbf{\mu_0}^T \Sigma^{-1} \mathbf{\mu_0}
+ (2\mathbf{\mu_1}^T \Sigma^{-1} - 2\mathbf{\mu_1}^T \Sigma^{-1}) \mathbf{x}]
+ log(\pi_1/\pi_0) = 0 }[/math]
And we see that the first pair of terms is constant, and the second pair is linear on x.
So that we end up with something of the form
[math]\displaystyle{ ax + b = 0 }[/math].
Jgpitt - 2011/09/21