proof of Theorem 1: Difference between revisions
Jump to navigation
Jump to search
(Created page with "Let <math>\textbf{u}_k</math> and <math>\textbf{v}_k</math> denote column k of <math>\textbf{U}</math> and <math>\textbf{V}</math> respectively, We prove the theorem by expanding...") |
No edit summary |
||
Line 10: | Line 10: | ||
</math></center> | </math></center> | ||
The above proof is the proof of Theorem 2.1 in Witten, Tibshirani and Hastie | The above proof is the proof of Theorem 2.1 in <ref name="WTH2009">Daniela M. Witten, Robert Tibshirani, and Trevor Hastie. (2009) "A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis". ''Biostatistics'', 10(3):515–534.</ref> |
Revision as of 19:57, 8 November 2010
Let [math]\displaystyle{ \textbf{u}_k }[/math] and [math]\displaystyle{ \textbf{v}_k }[/math] denote column k of [math]\displaystyle{ \textbf{U} }[/math] and [math]\displaystyle{ \textbf{V} }[/math] respectively, We prove the theorem by expanding out the squared Frobenius norm and rearranging terms:
The above proof is the proof of Theorem 2.1 in <ref name="WTH2009">Daniela M. Witten, Robert Tibshirani, and Trevor Hastie. (2009) "A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis". Biostatistics, 10(3):515–534.</ref>