Describtion of Text Mining: Difference between revisions
Line 11: | Line 11: | ||
== Classification == | == Classification == | ||
Classification in Text Mining aims to assigned predefined classes to text documents. For a set | Classification in Text Mining aims to assigned predefined classes to text documents. For a set <math>mathcal{D}$<\math> | ||
== Clustering == | == Clustering == |
Revision as of 17:53, 19 November 2020
Presented by
Yawen Wang, Danmeng Cui, Zijie Jiang, Mingkang Jiang, Haotian Ren, Haris Bin Zahid
Introduction
This paper focuses on the different text mining tasks and the existence of text mining in healthcare and biomedical domains. The text mining field has been popular as a result of the amount of text data that is available in different forms. The text data is bound to grow even more in 2020, indicating a 50 times growth since 2010. To further explore the text mining field, the related text mining approaches can be considered. The different text mining approaches relate to two main methods: knowledge delivery and traditional data mining methods. The authors note that knowledge delivery methods involve the application of different steps to a specific data set to create specific patterns. Research in knowledge delivery methods has evolved over the years due to advances in hardware and software technology. On the other hand, data mining has experienced substantial development through the intersection of three fields: databases, machine learning, and statistics. As brought out by the authors, text mining approaches focus on the exploration of information from a specific text. The information explored is in the form of structured, semi-structured, and unstructured text. It is important to note that text mining covers different sets of algorithms and topics that include information retrieval. The topics and algorithms are used for analyzing different text forms.
Text Representation and Encoding
In this section of the paper, the authors explore the different ways in which the text can be represented on a large collection of documents. One common way of representing the documents is in the form of a bag of words. The bag of words considers the occurrences of different terms. In different text mining applications, documents are ranked and represented as vectors so as to display the significance of any word. The authors note that the three basic models used are vector space, inference network, and the probabilistic models. The vector space model is used to represent documents by converting them into vectors. In the model, a variable is used to represent each model to indicate the importance of the word in the document. The words are weighted using the TF-IDF scheme computed as [math]\displaystyle{ q(w)=f_d(w)*log{\frac{|D|}{f_D(w)}} }[/math]. In many text mining algorithms, one of the key components is preprocessing. Preprocessing consists of different tasks that include filtering, tokenization, stemming, and lemmatization. The first step is tokenization, where a character sequence is broken down into different words or phrases. After the breakdown, filtering is carried out to remove some words. The various word inflected forms are grouped together through lemmatization, and later, the derived roots of the derived words are obtained through stemming.
Classification
Classification in Text Mining aims to assigned predefined classes to text documents. For a set <math>mathcal{D}$<\math>
Clustering
Clustering
Information Extraction
Biomedical Application
Discussion
References
Allahyari, M., Pouriyeh, S., Assefi, M., Safaei, S., Trippe, E. D., Gutierrez, J. B., & Kochut, K. (2017). A brief survey of text mining: Classification, clustering, and extraction techniques. arXiv preprint arXiv:1707.02919.