XGBoost: A Scalable Tree Boosting System: Difference between revisions

From statwiki
Jump to navigation Jump to search
No edit summary
Line 36: Line 36:


Let's look at <math>\hat y_i</math>
Let's look at <math>\hat y_i</math>
<math>\hat y{i}^{(0)} = 0</math>
<math>\hat y{i}^{(0)} = 0</math>
<math>\hat y{i}^{(1)} = f_1(x_i)=\hat y_i^{(0)}+f_1(x_i)</math>
<math>\hat y{i}^{(1)} = f_1(x_i)=\hat y_i^{(0)}+f_1(x_i)</math>
<math>\hat y{i}^{(2)} = f_1(x_i) + f_2(x_i)=\hat y_i^{(1)}+f_2(x_i)</math>
<math>\hat y{i}^{(2)} = f_1(x_i) + f_2(x_i)=\hat y_i^{(1)}+f_2(x_i)</math>
...
...
<math>\hat y{i}^{(t)} = \sum^t_{i=1}f_k(x_i)=\hat y_i^{(t-1)}+f_t(x_i)</math>
<math>\hat y{i}^{(t)} = \sum^t_{i=1}f_k(x_i)=\hat y_i^{(t-1)}+f_t(x_i)</math>

Revision as of 00:33, 22 November 2018

Presented by

  • Qianying Zhao
  • Hui Huang
  • Lingyun Yi
  • Jiayue Zhang
  • Siao Chen
  • Rongrong Su
  • Gezhou Zhang
  • Meiyu Zhou

2 Tree Boosting In A Nutshell

2.1 Regularized Learning Objective

1. Regression Decision Tree (also known as classification and regression tree):

  • Decision rules are the same as in decision tree
  • Contains one score in each leaf value


2. Model and Parameter

Model: Assuming there are K trees [math]\displaystyle{ \hat y_i = \sum^K_{k=1} f_k(x_I), f_k \in Ƒ }[/math]

Object: [math]\displaystyle{ Obj = \sum_{i=1}^n l(y_i,\hat y_i)+\sum^K_{k=1}\omega(f_k) }[/math]

where [math]\displaystyle{ \sum^n_{i=1}l(y_i,\hat y_i) }[/math] is training loss, [math]\displaystyle{ \sum_{k=1}^K \omega(f_k) }[/math] is complexity of Trees

So the target function that needed to optimize is:[math]\displaystyle{ \sum_{i=1}^n l(y_i,\hat y_i)+\sum^K_{k=1}\omega(f_k), f_k \in Ƒ }[/math], where [math]\displaystyle{ \omega(f) = \gamma T+\frac{1}{2}\lambda||w||^2 }[/math]

For example:

Let's look at [math]\displaystyle{ \hat y_i }[/math]

[math]\displaystyle{ \hat y{i}^{(0)} = 0 }[/math]

[math]\displaystyle{ \hat y{i}^{(1)} = f_1(x_i)=\hat y_i^{(0)}+f_1(x_i) }[/math]

[math]\displaystyle{ \hat y{i}^{(2)} = f_1(x_i) + f_2(x_i)=\hat y_i^{(1)}+f_2(x_i) }[/math]

...

[math]\displaystyle{ \hat y{i}^{(t)} = \sum^t_{i=1}f_k(x_i)=\hat y_i^{(t-1)}+f_t(x_i) }[/math]