Gradient Episodic Memory for Continual Learning: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 7: | Line 7: | ||
<center> | <center> | ||
<math> | <math> | ||
\frac{1}{|D_{tr}|\textstyle \sum_{x_i,y_i) \in D_{tr}} \ell (f(x_i),y_i) | \frac{1}{|D_{tr}|}\textstyle \sum_{x_i,y_i) \in D_{tr}} \ell (f(x_i),y_i) | ||
</math> | </math> | ||
</center> | </center> |
Revision as of 00:49, 17 November 2018
Group Member
Yu Xuan Lee, Tsen Yee Heng
Background and Introduction
Supervised learning consist of a training set [math]\displaystyle{ D_{tx}={(x_i,y_i)}^n_{i=1} }[/math], where [math]\displaystyle{ x_i \in X }[/math] and [math]\displaystyle{ y_i \in Y }[/math]. Empirical Risk Minimization (ERM) is one of the common supervised learning method used to minimize a loss function by having multiple passes over the training set.
[math]\displaystyle{ \frac{1}{|D_{tr}|}\textstyle \sum_{x_i,y_i) \in D_{tr}} \ell (f(x_i),y_i) }[/math]
where [math]\displaystyle{ \ell :math cal{Y} \times math cal{Y} -\gt [0, \infty) }[/math]
Gradient Episodic Memory (GEM) is a continual learning model that alleviates forgetting on previous acquired knowledge, while solving new problems more efficiently.