stat441w18/Convolutional Neural Networks for Sentence Classification: Difference between revisions
Jump to navigation
Jump to search
(Created page with "= Presented by = 1. Ben Schwarz 2. Cameron Miller 3. Hamza Mirza 4. Pavle Mihajlovic 5. Terry Shi 6. Yitian Wu 7. Zekai Shao = Introduction = = Model = === Model Se...") |
No edit summary |
||
Line 24: | Line 24: | ||
<math> \boldsymbol{x}_{1:n} = \boldsymbol{x}_{1} \oplus \boldsymbol{x}_2 \oplus \dots \oplus \boldsymbol{x}_n </math>. | <math> \boldsymbol{x}_{1:n} = \boldsymbol{x}_{1} \oplus \boldsymbol{x}_2 \oplus \dots \oplus \boldsymbol{x}_n </math>. | ||
=== Model Regularization === | === Model Regularization === |
Revision as of 16:38, 4 March 2018
Presented by
1. Ben Schwarz
2. Cameron Miller
3. Hamza Mirza
4. Pavle Mihajlovic
5. Terry Shi
6. Yitian Wu
7. Zekai Shao
Introduction
Model
Model Settings
Consider a sentence of length [math]\displaystyle{ n }[/math], represented by [math]\displaystyle{ \boldsymbol{x}_{1:n} }[/math]. Let [math]\displaystyle{ \boldsymbol{x}_i \in \mathbb{R}^k }[/math] be the [math]\displaystyle{ i }[/math]-th word in this sentence and [math]\displaystyle{ \oplus }[/math] be the concatenation operator. Thus,
[math]\displaystyle{ \boldsymbol{x}_{1:n} = \boldsymbol{x}_{1} \oplus \boldsymbol{x}_2 \oplus \dots \oplus \boldsymbol{x}_n }[/math].