kernelized Locality-Sensitive Hashing: Difference between revisions
No edit summary |
|||
Line 6: | Line 6: | ||
=== Central Limit Theorem === | === Central Limit Theorem === | ||
Suppose <math>\mathcal{D}</math> is a multivariate distribution with mean <math>\mu</math> and covariance <math>\Sigma</math>. Let <math>x_1, x_2, ..., x_t</math> be <math>t</math> random vectors sampled <i>i.i.d</i> from <math>\mathcal{D}</math>. The central limit theorem tells us that for sufficiently large <math>t</math>, the random vector | |||
<math>z_t = \sqrt{t}(\bar{x}_t - \mu)</math> | |||
approximately follows a multivariate Gaussian distribution <math>\mathcal{N}(0,\Sigma)</math>, where <math>\bar{x}_t = \frac{1}{t} \sum_i x_i</math> | |||
=== Whitening Transform === | === Whitening Transform === | ||
=== Johnson-Lindenstrauss Lemma === | === Johnson-Lindenstrauss Lemma === |
Revision as of 11:23, 8 July 2013
Locality Sensitive Hashing (LSH) is a form of dimension reduction that finds embedding of high dimensional data into a low dimensional hamming space while providing probabilistic collision guarantees. That is, similar data points will have the same low dimensional mapping with high probability. One immediate application of LSH is large scale nearest neighbour search/classification. A large database of objects (e.g. images) can be partitioned into disjoint buckets so that objects of a single bucket share the same low dimensional representation which is used as a key to that bucket. At query time, the low dimensional representation of the query object determines a single bucket of “the most probably similar objects” which can then be searched in the traditional way.
For each similarity measure, a locality sensitive hashing method has to be designed carefully to ensure practically acceptable probabilistic collision guarantees. It was also noticed that most of the previous work done on LSH assumes that data points come from multidimensional vector space and the underlying embedding is explicitly known. However, that is not always the case. For example the RBF kernel maps the data to an infinite dimensional space which is intractable to explicitly work with. This paper generalizes locality sensitive hashing by proposing a fully kernelized method that provides the desirable collision guarantees.
Preliminaries
Central Limit Theorem
Suppose [math]\displaystyle{ \mathcal{D} }[/math] is a multivariate distribution with mean [math]\displaystyle{ \mu }[/math] and covariance [math]\displaystyle{ \Sigma }[/math]. Let [math]\displaystyle{ x_1, x_2, ..., x_t }[/math] be [math]\displaystyle{ t }[/math] random vectors sampled i.i.d from [math]\displaystyle{ \mathcal{D} }[/math]. The central limit theorem tells us that for sufficiently large [math]\displaystyle{ t }[/math], the random vector
[math]\displaystyle{ z_t = \sqrt{t}(\bar{x}_t - \mu) }[/math]
approximately follows a multivariate Gaussian distribution [math]\displaystyle{ \mathcal{N}(0,\Sigma) }[/math], where [math]\displaystyle{ \bar{x}_t = \frac{1}{t} \sum_i x_i }[/math]
Whitening Transform
Johnson-Lindenstrauss Lemma
Random Projection
Kernel Centering
Locality Sensitive Hashing
Kernelized Locality Sensitive Hashing
Empirical Results
Discussion and Critique
Related Methods
Spectral Hashing
Random Fourier Features
References
1. B. Kulis, K. Grauman, "Kernelized Locality-Sensitive Hashing," In IEEE Transactions on Pattern Analysis and Machine Intelligence, June 2012.