stat341f11: Difference between revisions
mNo edit summary |
|||
Line 6: | Line 6: | ||
===Sample from uniform distribution.=== | ===Sample from uniform distribution.=== | ||
Computers | Computers can't generate random numbers as they are deterministic but can produce pseudo random numbers. | ||
===Multiplicative Congruential=== | ===Multiplicative Congruential=== | ||
Line 19: | Line 19: | ||
Matlab code for generating 1000 randoms using the multiplicative congruential method: | Matlab code for generating 1000 randoms using the multiplicative congruential method: | ||
<pre> | |||
a=13; | a=13; | ||
b=0; | b=0; | ||
Line 27: | Line 28: | ||
x(ii+1) = mod(a*x(ii)+b,m); | x(ii+1) = mod(a*x(ii)+b,m); | ||
end | end | ||
</pre> | |||
Facts about this algorithm: | Facts about this algorithm: |
Revision as of 14:38, 22 September 2011
Editor Sign Up
Sampling - Sept 20, 2011
From [math]\displaystyle{ x ~ f(x) }[/math] sample [math]\displaystyle{ x_{1}, x_{2}, ..., x_{1000} }[/math]
Sample from uniform distribution.
Computers can't generate random numbers as they are deterministic but can produce pseudo random numbers.
Multiplicative Congruential
- involves three integers
- a, b, m
- an initial value x0, we call the seed
- a sequence of integers is defined as
- [math]\displaystyle{ x_{k+1} = (ax_{k} + b) \mod{m} }[/math]
Example: a=13 b=0 m=31 x0=1 creates a uniform histogram
Matlab code for generating 1000 randoms using the multiplicative congruential method:
a=13; b=0; m=31; x=1; for ii = 1:1000 x(ii+1) = mod(a*x(ii)+b,m); end
Facts about this algorithm:
- the first 30 terms in the sequence are a permutation of integers from 1 to 30 then the sequence repeats itself
- values are between 0 and m-1
- if you divide it by m-1 the result is numbers uniformly distributed in the interval of 0 and 1
- in matlab the values choosen are a=75 b=0 m=231-1 due to a 1988 paper showing they are optimal
Inverse Transform Method
- [math]\displaystyle{ P(a\lt x\lt b)=\int_a^{b} f(x) dx }[/math]
- [math]\displaystyle{ cdf=F(x)=P(X\lt =x)=\int_{-\infty}^{x} f(x) dx }[/math]
Assume cdf & cdf -1 can be found
Theorem:
Take [math]\displaystyle{ U \sim~ \mathrm{Unif}[0, 1] }[/math] and let [math]\displaystyle{ x=F^{-1}(u) }[/math]. Then x has distribution function [math]\displaystyle{ F() }[/math], where [math]\displaystyle{ F(x)=P(X\lt =x) }[/math].
Let [math]\displaystyle{ F^{-1}() }[/math] denote the inverse of [math]\displaystyle{ F() }[/math] therefore [math]\displaystyle{ F(x)=u \implies x=F^{-1}(u) }[/math]
Take the the exponential distribution for example
- [math]\displaystyle{ \,f(x)={\lambda}e^{-{\lambda}x} }[/math]
- [math]\displaystyle{ \,F(x)=\int_0^x {\lambda}e^{-{\lambda}u} du }[/math]
- [math]\displaystyle{ \,F(x)=1-e^{-{\lambda}x} }[/math]
Let: [math]\displaystyle{ \,F(x)=y }[/math]
- [math]\displaystyle{ \,y=1-e^{-{\lambda}x} }[/math]
- [math]\displaystyle{ \,ln(1-y)={-{\lambda}x} }[/math]
- [math]\displaystyle{ \,x=\frac{ln(1-y)}{-\lambda} }[/math]
- [math]\displaystyle{ \,F^{-1}(x)=\frac{-ln(1-x)}{\lambda} }[/math]
Therefore, to get a exponential distribution from a uniform distribution takes 2 steps.
- Step 1. Draw [math]\displaystyle{ U \sim~ \mathrm{Unif}[0, 1] }[/math]
- Step 2. [math]\displaystyle{ x=\frac{-ln(1-F(u))}{\lambda} }[/math]
Now we just have to show the generated points have a cdf of F(x)
- [math]\displaystyle{ \,p(F^{-1}(u)\lt =x) }[/math]
- [math]\displaystyle{ \,p(F(F^{-1}(u))\lt =F(x)) }[/math]
- [math]\displaystyle{ \,p(u\lt =F(x)) }[/math]
- [math]\displaystyle{ \,=F(x) }[/math]
QED
Discrete Case
This same technique can be applied to the discrete case Generate a discrete random variable x that has probability mass function [math]\displaystyle{ \,p(x=x_i)=P_i }[/math] where [math]\displaystyle{ \,x_0\lt x_1\lt x_2... }[/math] and [math]\displaystyle{ \,\sum p_i=1 }[/math]
- Step 1 Draw [math]\displaystyle{ U \sim~ \mathrm{Unif}[0, 1] }[/math]
- Step 2 [math]\displaystyle{ \,x=x_i }[/math] if [math]\displaystyle{ \,F(x_{i-1})\lt u\lt =F(x_i) }[/math]