stat341f11: Difference between revisions

From statwiki
Jump to navigation Jump to search
No edit summary
Line 15: Line 15:
:<math>x_{k+1} = (ax_{k} + b) \mod{m}</math>
:<math>x_{k+1} = (ax_{k} + b) \mod{m}</math>


example: a=13 b=0 m=31 x<sub>0</sub>=1 creates a uniform histogram
Example: a=13 b=0 m=31 x<sub>0</sub>=1 creates a uniform histogram
 
Matlab code for generating 1000 randoms using the multiplicative congruential method:
 
a=13;
b=0;
m=31;
x=1;
 
for ii = 1:1000
    x(ii+1) = mod(a*x(ii)+b,m);
end
 
Facts about this algorithm:
*the first 30 terms in the sequence are a permutation of integers from 1 to 30 then the sequence repeats itself
*the first 30 terms in the sequence are a permutation of integers from 1 to 30 then the sequence repeats itself
*values are between 0 and m-1
*values are between 0 and m-1
*if you divide it by m-1 the result is numbers uniformly distributed in the interval of 0 and 1
*if you divide it by m-1 the result is numbers uniformly distributed in the interval of 0 and 1
*in matlab the values choosen are a=7<sup>5</sup> b=0 m=2<sup>31</sup>-1 due to a 1988 paper showing they are optimal
*in matlab the values choosen are a=7<sup>5</sup> b=0 m=2<sup>31</sup>-1 due to a 1988 paper showing they are optimal
===Inverse Transform Method===
===Inverse Transform Method===
:<math>P(a<x<b)=\int_a^{b} f(x) dx</math>
:<math>P(a<x<b)=\int_a^{b} f(x) dx</math>

Revision as of 10:47, 22 September 2011

Editor Sign Up

Sampling - Sept 20, 2011

From [math]\displaystyle{ x ~ f(x) }[/math] sample [math]\displaystyle{ x_{1}, x_{2}, ..., x_{1000} }[/math]

Sample from uniform distribution.

Computers cant generate random numbers as they are deterministic but can produce pseudo random numbers.

Multiplicative Congruential

  • involves three integers
  • a, b, m
  • an initial value x0, we call the seed
  • a sequence of integers is defined as
[math]\displaystyle{ x_{k+1} = (ax_{k} + b) \mod{m} }[/math]

Example: a=13 b=0 m=31 x0=1 creates a uniform histogram

Matlab code for generating 1000 randoms using the multiplicative congruential method:

a=13; b=0; m=31; x=1;

for ii = 1:1000

   x(ii+1) = mod(a*x(ii)+b,m);

end

Facts about this algorithm:

  • the first 30 terms in the sequence are a permutation of integers from 1 to 30 then the sequence repeats itself
  • values are between 0 and m-1
  • if you divide it by m-1 the result is numbers uniformly distributed in the interval of 0 and 1
  • in matlab the values choosen are a=75 b=0 m=231-1 due to a 1988 paper showing they are optimal

Inverse Transform Method

[math]\displaystyle{ P(a\lt x\lt b)=\int_a^{b} f(x) dx }[/math]
[math]\displaystyle{ cdf=F(x)=P(X\lt =x)=\int_{-\infty}^{x} f(x) dx }[/math]

Assume cdf & cdf -1 can be found

Theorem:

Take [math]\displaystyle{ U \sim~ \mathrm{Unif}[0, 1] }[/math] and let [math]\displaystyle{ x=F^{-1}(u) }[/math]. Then x has distribution function [math]\displaystyle{ F() }[/math], where [math]\displaystyle{ F(x)=P(X\lt =x) }[/math].

Let [math]\displaystyle{ F^{-1}() }[/math] denote the inverse of [math]\displaystyle{ F() }[/math] therefore [math]\displaystyle{ F(x)=u \implies x=F^{-1}(u) }[/math]

Take the the exponential distribution for example

[math]\displaystyle{ \,f(x)={\lambda}e^{-{\lambda}x} }[/math]
[math]\displaystyle{ \,F(x)=\int_0^x {\lambda}e^{-{\lambda}u} du }[/math]
[math]\displaystyle{ \,F(x)=1-{\lambda}e^{-{\lambda}x} }[/math]
[math]\displaystyle{ \,{\lambda}e^{-{\lambda}x}=1-F(x) }[/math]
[math]\displaystyle{ \,{-{\lambda}x}=ln(1-F(x)) }[/math]
[math]\displaystyle{ \,x=\frac{ln(1-F(x))}{-\lambda} }[/math]
[math]\displaystyle{ \,F^{-1}(x)=\frac{-ln(1-F(x))}{\lambda} }[/math]


Therefore, to get a exponential distribution from a uniform distribution takes 2 steps.

  • Step 1. Draw [math]\displaystyle{ U \sim~ \mathrm{Unif}[0, 1] }[/math]
  • Step 2. [math]\displaystyle{ x=\frac{-ln(1-F(u))}{\lambda} }[/math]

Now we just have to show the generated points have a cdf of F(x)

[math]\displaystyle{ \,p(F^{-1}(u)\lt =x) }[/math]
[math]\displaystyle{ \,p(F(F^{-1}(u))\lt =F(x)) }[/math]
[math]\displaystyle{ \,p(u\lt =F(x)) }[/math]
[math]\displaystyle{ \,=F(x) }[/math]

QED

Discrete Case

This same technique can be applied to the discrete case Generate a discrete random variable x that has probability mass function [math]\displaystyle{ \,p(x=x_i)=P_i }[/math] where [math]\displaystyle{ \,x_0\lt x_1\lt x_2... }[/math] and [math]\displaystyle{ \,\sum p_i=1 }[/math]

  • Step 1 Draw [math]\displaystyle{ U \sim~ \mathrm{Unif}[0, 1] }[/math]
  • Step 2 [math]\displaystyle{ \,x=x_i }[/math] if [math]\displaystyle{ \,F(x_{i-1})\lt u\lt =F(x_i) }[/math]