stat841f11: Difference between revisions
Line 28: | Line 28: | ||
'''classification rule''': | '''classification rule''': | ||
<math>h : \mathcal{X} \rightarrow \mathcal{Y}</math> | <math>h : \mathcal{X} \rightarrow \mathcal{Y}</math> | ||
Take new observation <math>X</math> | Take new observation <math>X</math>, using function <math>h(x)</math> to generate a label <math>Y</math>. In other words, If we fit this function with <math>X</math>, it generates <math>Y</math> as the class to which <math>X</math> belongs. | ||
Example: an image (2-d), which can be represented by a long vector <math>\mathbf{X}</math> | Example: an image (2-d), which can be represented by a long vector <math>\mathbf{X}</math> | ||
Line 57: | Line 57: | ||
compare the known-true against the classified-true, count, divide by n=100 | compare the known-true against the classified-true, count, divide by n=100 | ||
=== Bayes Classifier === | === Bayes Classifier === |
Revision as of 20:55, 21 September 2011
Editor Sign Up
STAT 441/841 / CM 463/763 - Tuesday, 2011/09/20
Wiki Course Notes
Students will need to contribute to the wiki for 20% of their grade. Access via wikicoursenote.com Go to editor sign-up, and use your UW userid for your account name, and use your UW email.
primary (10%) Post a draft of lecture notes within 48 hours. You will need to do this 1 or 2 times, depending on class size.
secondary (10%) Make improvements to the notes for at least 60% of the lectures. More than half of your contributions should be technical rather than editorial. There will be a spreadsheet where students can indicate what they've done and when. The instructor will conduct random spot checks to ensure that students have contributed what they claim.
Classification
definitions
classification: Predict a discrete random variable [math]\displaystyle{ Y }[/math] by using another random variable [math]\displaystyle{ X }[/math] iid
[math]\displaystyle{ X_i = (X_{i1}, X_{i2}, ... X_{id}) \in \mathcal{X} \subset \mathbb{R}^d }[/math] ([math]\displaystyle{ d }[/math]-dimensional vector) [math]\displaystyle{ Y_i }[/math] in some finite set [math]\displaystyle{ \mathcal{Y} }[/math]
classification rule:
[math]\displaystyle{ h : \mathcal{X} \rightarrow \mathcal{Y} }[/math]
Take new observation [math]\displaystyle{ X }[/math], using function [math]\displaystyle{ h(x) }[/math] to generate a label [math]\displaystyle{ Y }[/math]. In other words, If we fit this function with [math]\displaystyle{ X }[/math], it generates [math]\displaystyle{ Y }[/math] as the class to which [math]\displaystyle{ X }[/math] belongs.
Example: an image (2-d), which can be represented by a long vector [math]\displaystyle{ \mathbf{X} }[/math]
true error rate for classifier [math]\displaystyle{ h }[/math]
[math]\displaystyle{ L(h) = (P(h(X) \neq Y ) }[/math]
empirical error rate (or training error rate)
[math]\displaystyle{ \hat{L}_n(h) = (1/n) \sum_{i=1}^{n} I(h(X_i) \neq Y_i) }[/math]
where [math]\displaystyle{ I() }[/math] indicates misclassification, i.e.,
[math]\displaystyle{ I = 1 \ \rightarrow \ h() }[/math] misclassifies this [math]\displaystyle{ X }[/math]
[math]\displaystyle{ I = 0 \ \rightarrow \ h() }[/math] does not misclassify this [math]\displaystyle{ X }[/math]
e.g., 100 new data points with known (true) labels
[math]\displaystyle{ y_1 = h(x_1) }[/math]
...
[math]\displaystyle{ y_{100} = h(x_{100}) }[/math]
compare the known-true against the classified-true, count, divide by n=100
Bayes Classifier
First recall Bayes' Rule, in the format [math]\displaystyle{ P(Y|X) = \frac{P(X|Y) P(Y)} {P(X)} }[/math]
P(Y|X) : posterior
P(X|Y) : likelihood
P(Y) : prior
P(X) : marginal
We will start with the simplest case: [math]\displaystyle{ \mathcal{Y} = \{0,1\} }[/math]
[math]\displaystyle{ r(x) = P(Y=1|X=x) }[/math] [math]\displaystyle{ = \frac{P(X=x|Y=1) P(Y=1)} {P(X=x)} }[/math] [math]\displaystyle{ = \frac{P(X=x|Y=1) P(Y=1)} {P(X=x|Y=1) P(Y=1) + P(X=x|Y=0) P(Y=0)} }[/math]
Which of the following do we prefer to work with,
- P(Y=1|X=x) or
- P(X=x|Y=1) ?
The former reflects a Bayesian approach - degree of belief. So, Y is not a RV. The latter reflects a frequentist approach - frequency (of observation). (Ease of computation and validity were proposed and discussed by students.)
The question remains unresolved.
The Bayes Classifier uses [math]\displaystyle{ P(Y=1|X=x) }[/math]
[math]\displaystyle{ P(Y=1|X=x) = \frac{P(X=x|Y=1) P(Y=1)} {P(X=x|Y=1) P(Y=1) + P(X=x|Y=0) P(Y=0)} }[/math]
P(Y=1) : the prior, based on belief/evidence beforehand
denominator : marginalized by summation
[math]\displaystyle{ h(x) = \begin{cases} 1 \ \ \hat{r}(x) \gt 1/2 \\ 0 \ \ otherwise \end{cases} }[/math]
The set [math]\displaystyle{ \mathcal{D}(h) = \{ x : P(Y=1|X=x) = P(Y=0|X=x)... \} }[/math]
which defines a decision boundary.
Theorem: Bayes rule is optimal. I.e., if h is any other classification rule,
then [math]\displaystyle{ L(h^*) \lt = L(h) }[/math]
(This is to be proved in homework.)
Therefore, Why do we need any other method? A: Because X densities are often/typically unknown. I.e., [math]\displaystyle{ f_k(x) }[/math] and/or [math]\displaystyle{ \pi_k }[/math] unknown.
[math]\displaystyle{ P(Y=k|X=x) = \frac{P(X=x|Y=k) ...} {...} = \frac{f_k(x) \pi_k} {\sum_k f_k(x) \pi_k} }[/math] f_k(x) is referred to as the class conditional distribution (~likelihood).
Therefore, we rely on some data to estimate quantities.
Three Main Approaches
1. Empirical Risk Minimization: Choose a set of classifier H (e.g., line, neural network) and find [math]\displaystyle{ h^* \in H }[/math] that minimizes (some estimate of) L(h).
2. Regression: Find an estimate ([math]\displaystyle{ \hat{r} }[/math]) of function [math]\displaystyle{ r }[/math] and define [math]\displaystyle{ h(x) = \begin{cases} 1 \ \ \hat{r}(x) \gt 1/2 \\ 0 \ \ otherwise \end{cases} }[/math]
The problem is more difficult, because of restricted domain (discrete label values).
3. Density Estimation: Estimate [math]\displaystyle{ P(X=x|Y=0) }[/math] from [math]\displaystyle{ X_i }[/math]'s for which [math]\displaystyle{ Y_i = 0 }[/math] Estimate [math]\displaystyle{ P(X=x|Y=1) }[/math] from [math]\displaystyle{ X_i }[/math]'s for which [math]\displaystyle{ Y_i = 1 }[/math] and let [math]\displaystyle{ P(Y=?) = (1/n) \sum_{i=1}^{n} Y_i }[/math]
Define [math]\displaystyle{ \hat{r}(x) = \hat{P}(Y=1|X=x) }[/math] and [math]\displaystyle{ h(x) = \begin{cases} 1 \ \ \hat{r}(x) \gt 1/2 \\ 0 \ \ otherwise \end{cases} }[/math]
Problems?
not enough data to estimate? - possibly
high error rate?
big one: not good in high-dimensional space
As the dimension of the space goes up, the learning requirements go up exponentially.
Multi-Class Classification
Generalize to case Y takes on k>2 values.
Theorem: [math]\displaystyle{ Y \in \mathcal{Y} = {1,2,..., k} }[/math] optimal rule
[math]\displaystyle{ h*(x) = argmax_k P }[/math]
where [math]\displaystyle{ P(Y=k|X=x) = \frac{f_k(x) \pi_k} {\sum ...} }[/math]
LDA and QDA
(linear discriminant analysis, and quadratic discriminant analysis)
Simplest: Use approach 3 (above) and assume a parametric model for densities. Assume class conditional is Gaussian.
LDA (also known as FDA (Fisher's), which is in fact not really the same thing)
[math]\displaystyle{ \mathcal{Y} = \{ 0,1 \} }[/math] assumed (i.e., 2 labels)
[math]\displaystyle{ h(x) = \begin{cases} 1 \ \ P(Y=1|X=x) \gt P(Y=0|X=x) \\ 0 \ \ otherwise \end{cases} }[/math]
[math]\displaystyle{ P(Y=1|X=x) = \frac{f_1(x) \pi_1} {\sum_k f_k \pi_k} \ \ }[/math] (denom = P(x))
1) Assume Gaussian distributions
[math]\displaystyle{ f_k(x) = [(2\pi)^{-d/2} |\Sigma_k|^{-1/2}] exp(-(1/2)(\mathbf{x} - \mathbf{\mu_k}) \Sigma_k^{-1}(\mathbf{x}-\mathbf{\mu_k}) ) }[/math]
must compare [math]\displaystyle{ \frac{f_1(x) \pi_1} {p(x)} with \frac{f_0(x) \pi_0} {p(x)} }[/math] Note that the p(x) denom can be ignored: [math]\displaystyle{ f_1(x) \pi_1 }[/math] with [math]\displaystyle{ f_0(x) \pi_0 }[/math]
To find the decision boundary, set [math]\displaystyle{ f_1(x) \pi_1 = f_0(x) \pi_0 }[/math]
Because we are assuming [math]\displaystyle{ \Sigma_1 = \Sigma_0 }[/math], we can use [math]\displaystyle{ \Sigma = \Sigma_0 = \Sigma_1 }[/math].
Cancel [math]\displaystyle{ (2\pi)^{-d/2} |\Sigma_k|^{-1/2} }[/math] from both sides.
Take log of both sides.
Subtract one side from both sides, leaving zero on one side.
[math]\displaystyle{ -(1/2)(\mathbf{x} - \mathbf{\mu_1})^T \Sigma^{-1} (\mathbf{x}-\mathbf{\mu_1}) + log(\pi_1) - [-(1/2)(\mathbf{x} - \mathbf{\mu_0})^T \Sigma^{-1} (\mathbf{x}-\mathbf{\mu_0}) + log(\pi_0)] = 0 }[/math]
[math]\displaystyle{ (1/2)[-\mathbf{x}^T \Sigma^{-1} - \mathbf{\mu_1}^T \Sigma^{-1} \mathbf{\mu_1} + 2\mathbf{\mu_1}^T \Sigma^{-1} \mathbf{x}
+ \mathbf{x}^T \Sigma^{-1} + \mathbf{\mu_0}^T \Sigma^{-1} \mathbf{\mu_0} - 2\mathbf{\mu_0}^T \Sigma^{-1} \mathbf{x} ]
+ log(\pi_1/\pi_0) = 0 }[/math]
Which reduces to
[math]\displaystyle{ (1/2)[\mathbf{\mu_1}^T \Sigma^{-1} \mathbf{\mu_1} + \mathbf{\mu_0}^T \Sigma^{-1} \mathbf{\mu_0}
+ (2\mathbf{\mu_1}^T \Sigma^{-1} - 2\mathbf{\mu_1}^T \Sigma^{-1}) \mathbf{x}]
+ log(\pi_1/\pi_0) = 0 }[/math]
And we see that the first pair of terms is constant, and the second pair is linear on x.
So that we end up with something of the form
[math]\displaystyle{ ax + b = 0 }[/math].
Jgpitt - 2011/09/21