a Deeper Look into Importance Sampling: Difference between revisions
m (Conversion script moved page A Deeper Look into Importance Sampling to a Deeper Look into Importance Sampling: Converting page titles to lowercase) |
|||
(53 intermediate revisions by 8 users not shown) | |||
Line 15: | Line 15: | ||
Obtaining the second moment, | Obtaining the second moment, | ||
<math>\displaystyle E[(w(x))^2] = \int (\frac{h(x)f(x)}{g(x)})^2 g(x) dx</math> | ::<math>\displaystyle E[(w(x))^2] </math> | ||
<math>\displaystyle = \int \frac{h^2(x) f^2(x)}{g^2(x)} g(x) dx </math> | ::<math>\displaystyle = \int (\frac{h(x)f(x)}{g(x)})^2 g(x) dx</math> | ||
<math>\displaystyle = \int \frac{h^2(x)f^2(x)}{g(x)} dx </math> | ::<math>\displaystyle = \int \frac{h^2(x) f^2(x)}{g^2(x)} g(x) dx </math> | ||
::<math>\displaystyle = \int \frac{h^2(x)f^2(x)}{g(x)} dx </math> | |||
We can see that if <math>\displaystyle g(x) \rightarrow 0 </math>, then <math>\displaystyle E[(w(x))^2] \rightarrow \infty </math>. This occurs if <math>\displaystyle g </math> has a thinner tail than <math>\displaystyle f </math> then <math>\frac{h^2(x)f^2(x)}{g(x)} </math> could be infinitely large. | We can see that if <math>\displaystyle g(x) \rightarrow 0 </math>, then <math>\displaystyle E[(w(x))^2] \rightarrow \infty </math>. This occurs if <math>\displaystyle g </math> has a thinner tail than <math>\displaystyle f </math> then <math>\frac{h^2(x)f^2(x)}{g(x)} </math> could be infinitely large. The general idea here is that <math>\frac{f(x)}{g(x)} </math> should not be large. | ||
=====Remark 1===== | |||
It is evident that <math>\displaystyle g(x) </math> should be chosen such that it has a thicker tail than <math>\displaystyle f(x) </math>. | It is evident that <math>\displaystyle g(x) </math> should be chosen such that it has a thicker tail than <math>\displaystyle f(x) </math>. | ||
If <math>\displaystyle f</math> is large over set <math>\displaystyle A</math> but < | If <math>\displaystyle f</math> is large over set <math>\displaystyle A</math> but <math>\displaystyle g</math> is small, then <math>\displaystyle \frac{f}{g} </math> would be large and it would result in a large variance. | ||
=====Remark 2===== | |||
It is useful if we can choose <math>\displaystyle g </math> to be similar to <math>\displaystyle f</math> in terms of shape. Analytically, we can show that | It is useful if we can choose <math>\displaystyle g </math> to be similar to <math>\displaystyle f</math> in terms of shape. Ideally, the optimal <math>\displaystyle g </math> should be similar to <math>\displaystyle \left| h(x) \right|f(x)</math>, and have a thicker tail. Analytically, we can show that the best <math>\displaystyle g</math> is the one that would result in a variance that is minimized. | ||
=====Remark 3===== | |||
Choose <math>\displaystyle g </math> such that it is similar to <math>\displaystyle \left| h(x) \right| f(x) </math> in terms of shape. That is, we want <math>\displaystyle g \propto \displaystyle \left| h(x) \right| f(x) </math> | |||
===[[ | ====Theorem (Minimum Variance Choice of <math>\displaystyle g</math>) ==== | ||
The choice of <math>\displaystyle g</math> that minimizes variance of <math>\hat I</math> is <math>\displaystyle g^*(x)=\frac{\left| h(x) \right| f(x)}{\int \left| h(s) \right| f(s) ds}</math>. | |||
=====Proof:===== | |||
We know that <math>\displaystyle w(x)=\frac{f(x)h(x)}{g(x)} </math> | |||
The variance of <math>\displaystyle w(x) </math> is | |||
:: <math>\displaystyle Var[w(x)] </math> | |||
:: <math>\displaystyle = E[(w(x)^2)] - [E[w(x)]]^2 </math> | |||
:: <math>\displaystyle = \int \left(\frac{f(x)h(x)}{g(x)} \right)^2 g(x) dx - \left[\int \frac{f(x)h(x)}{g(x)}g(x)dx \right]^2 </math> | |||
:: <math>\displaystyle = \int \left(\frac{f(x)h(x)}{g(x)} \right)^2 g(x) dx - \left[\int f(x)h(x) \right]^2 </math> | |||
As we can see, the second term does not depend on <math>\displaystyle g(x) </math>. Therefore to minimize <math>\displaystyle Var[w(x)] </math> we only need to minimize the first term. In doing so we will use '''Jensen's Inequality'''. | |||
======Aside: Jensen's Inequality====== | |||
If <math>\displaystyle g </math> is a convex function ( twice differentiable and <math>\displaystyle g''(x) \geq 0 </math> ) then <math>\displaystyle g(\alpha x_1 + (1-\alpha)x_2) \leq \alpha g(x_1) + (1-\alpha) g(x_2)</math><br /> | |||
Essentially the definition of convexity implies that the line segment between two points on a curve lies above the curve, which can then be generalized to higher dimensions: | |||
::<math>\displaystyle g(\alpha_1 x_1 + \alpha_2 x_2 + ... + \alpha_n x_n) \leq \alpha_1 g(x_1) + \alpha_2 g(x_2) + ... + \alpha_n g(x_n) </math> where <math> \alpha_1 + \alpha_2 + ... + \alpha_n = 1 </math> | |||
=====Proof (cont)===== | |||
Using Jensen's Inequality, <br /> | |||
::<math>\displaystyle g(E[x]) \leq E[g(x)] </math> as <math>\displaystyle g(E[x]) = g(p_1 x_1 + ... p_n x_n) <= p_1 g(x_1) + ... + p_n g(x_n) = E[g(x)] </math> | |||
Therefore | |||
::<math>\displaystyle E[(w(x))^2] \geq (E[\left| w(x) \right|])^2 </math> | |||
::<math>\displaystyle E[(w(x))^2] \geq \left(\int \left| \frac{f(x)h(x)}{g(x)} \right| g(x) dx \right)^2 </math> <br /> | |||
and | |||
::<math>\displaystyle \left(\int \left| \frac{f(x)h(x)}{g(x)} \right| g(x) dx \right)^2 </math> | |||
::<math>\displaystyle = \left(\int \frac{f(x)\left| h(x) \right|}{g(x)} g(x) dx \right)^2 </math> | |||
::<math>\displaystyle = \left(\int \left| h(x) \right| f(x) dx \right)^2 </math> since <math>\displaystyle f </math> and <math>\displaystyle g</math> are density functions, <math>\displaystyle f, g </math> cannot be negative. <br /> | |||
Thus, this is a lower bound on <math>\displaystyle E[(w(x))^2]</math>. If we replace <math>\displaystyle g^*(x) </math> into <math>\displaystyle E[g^*(x)]</math>, we can see that the result is as we require. Details omitted.<br /> | |||
However, this is mostly of theoritical interest. In practice, it is impossible or very difficult to compute <math>\displaystyle g^*</math>. | |||
Note: Jensen's inequality is actually unnecessary here. We just use it to get <math>E[(w(x))^2] \geq (E[|w(x)|])^2</math>, which could be derived using variance properties: <math>0 \leq Var[|w(x)|] = E[|w(x)|^2] - (E[|w(x)|])^2 = E[(w(x))^2] - (E[|w(x)|])^2</math>. | |||
===[[Importance Sampling and Markov Chain Monte Carlo (MCMC)]] - June 4, 2009=== |
Latest revision as of 08:45, 30 August 2017
A Deeper Look into Importance Sampling - June 2, 2009
From last class, we have determined that an integral can be written in the form [math]\displaystyle{ I = \displaystyle\int h(x)f(x)\,dx }[/math] [math]\displaystyle{ = \displaystyle\int \frac{h(x)f(x)}{g(x)}g(x)\,dx }[/math] We continue our discussion of Importance Sampling here.
Importance Sampling
We can see that the integral [math]\displaystyle{ \displaystyle\int \frac{h(x)f(x)}{g(x)}g(x)\,dx = \int \frac{f(x)}{g(x)}h(x) g(x)\,dx }[/math] is just [math]\displaystyle{ \displaystyle E_g(h(x)) \rightarrow }[/math]the expectation of h(x) with respect to g(x), where [math]\displaystyle{ \displaystyle \frac{f(x)}{g(x)} }[/math] is a weight [math]\displaystyle{ \displaystyle\beta(x) }[/math]. In the case where [math]\displaystyle{ \displaystyle f \gt g }[/math], a greater weight for [math]\displaystyle{ \displaystyle\beta(x) }[/math] will be assigned. Thus, the points with more weight are deemed more important, hence "importance sampling". This can be seen as a variance reduction technique.
Problem
The method of Importance Sampling is simple but can lead to some problems. The [math]\displaystyle{ \displaystyle \hat I }[/math] estimated by Importance Sampling could have infinite standard error.
Given [math]\displaystyle{ \displaystyle I= \int w(x) g(x) dx }[/math] [math]\displaystyle{ = \displaystyle E_g(w(x)) }[/math] [math]\displaystyle{ = \displaystyle \frac{1}{N}\sum_{i=1}^{N} w(x_i) }[/math] where [math]\displaystyle{ \displaystyle w(x)=\frac{f(x)h(x)}{g(x)} }[/math].
Obtaining the second moment,
- [math]\displaystyle{ \displaystyle E[(w(x))^2] }[/math]
- [math]\displaystyle{ \displaystyle = \int (\frac{h(x)f(x)}{g(x)})^2 g(x) dx }[/math]
- [math]\displaystyle{ \displaystyle = \int \frac{h^2(x) f^2(x)}{g^2(x)} g(x) dx }[/math]
- [math]\displaystyle{ \displaystyle = \int \frac{h^2(x)f^2(x)}{g(x)} dx }[/math]
We can see that if [math]\displaystyle{ \displaystyle g(x) \rightarrow 0 }[/math], then [math]\displaystyle{ \displaystyle E[(w(x))^2] \rightarrow \infty }[/math]. This occurs if [math]\displaystyle{ \displaystyle g }[/math] has a thinner tail than [math]\displaystyle{ \displaystyle f }[/math] then [math]\displaystyle{ \frac{h^2(x)f^2(x)}{g(x)} }[/math] could be infinitely large. The general idea here is that [math]\displaystyle{ \frac{f(x)}{g(x)} }[/math] should not be large.
Remark 1
It is evident that [math]\displaystyle{ \displaystyle g(x) }[/math] should be chosen such that it has a thicker tail than [math]\displaystyle{ \displaystyle f(x) }[/math]. If [math]\displaystyle{ \displaystyle f }[/math] is large over set [math]\displaystyle{ \displaystyle A }[/math] but [math]\displaystyle{ \displaystyle g }[/math] is small, then [math]\displaystyle{ \displaystyle \frac{f}{g} }[/math] would be large and it would result in a large variance.
Remark 2
It is useful if we can choose [math]\displaystyle{ \displaystyle g }[/math] to be similar to [math]\displaystyle{ \displaystyle f }[/math] in terms of shape. Ideally, the optimal [math]\displaystyle{ \displaystyle g }[/math] should be similar to [math]\displaystyle{ \displaystyle \left| h(x) \right|f(x) }[/math], and have a thicker tail. Analytically, we can show that the best [math]\displaystyle{ \displaystyle g }[/math] is the one that would result in a variance that is minimized.
Remark 3
Choose [math]\displaystyle{ \displaystyle g }[/math] such that it is similar to [math]\displaystyle{ \displaystyle \left| h(x) \right| f(x) }[/math] in terms of shape. That is, we want [math]\displaystyle{ \displaystyle g \propto \displaystyle \left| h(x) \right| f(x) }[/math]
Theorem (Minimum Variance Choice of [math]\displaystyle{ \displaystyle g }[/math])
The choice of [math]\displaystyle{ \displaystyle g }[/math] that minimizes variance of [math]\displaystyle{ \hat I }[/math] is [math]\displaystyle{ \displaystyle g^*(x)=\frac{\left| h(x) \right| f(x)}{\int \left| h(s) \right| f(s) ds} }[/math].
Proof:
We know that [math]\displaystyle{ \displaystyle w(x)=\frac{f(x)h(x)}{g(x)} }[/math]
The variance of [math]\displaystyle{ \displaystyle w(x) }[/math] is
- [math]\displaystyle{ \displaystyle Var[w(x)] }[/math]
- [math]\displaystyle{ \displaystyle = E[(w(x)^2)] - [E[w(x)]]^2 }[/math]
- [math]\displaystyle{ \displaystyle = \int \left(\frac{f(x)h(x)}{g(x)} \right)^2 g(x) dx - \left[\int \frac{f(x)h(x)}{g(x)}g(x)dx \right]^2 }[/math]
- [math]\displaystyle{ \displaystyle = \int \left(\frac{f(x)h(x)}{g(x)} \right)^2 g(x) dx - \left[\int f(x)h(x) \right]^2 }[/math]
As we can see, the second term does not depend on [math]\displaystyle{ \displaystyle g(x) }[/math]. Therefore to minimize [math]\displaystyle{ \displaystyle Var[w(x)] }[/math] we only need to minimize the first term. In doing so we will use Jensen's Inequality.
Aside: Jensen's Inequality
If [math]\displaystyle{ \displaystyle g }[/math] is a convex function ( twice differentiable and [math]\displaystyle{ \displaystyle g''(x) \geq 0 }[/math] ) then [math]\displaystyle{ \displaystyle g(\alpha x_1 + (1-\alpha)x_2) \leq \alpha g(x_1) + (1-\alpha) g(x_2) }[/math]
Essentially the definition of convexity implies that the line segment between two points on a curve lies above the curve, which can then be generalized to higher dimensions:
- [math]\displaystyle{ \displaystyle g(\alpha_1 x_1 + \alpha_2 x_2 + ... + \alpha_n x_n) \leq \alpha_1 g(x_1) + \alpha_2 g(x_2) + ... + \alpha_n g(x_n) }[/math] where [math]\displaystyle{ \alpha_1 + \alpha_2 + ... + \alpha_n = 1 }[/math]
Proof (cont)
Using Jensen's Inequality,
- [math]\displaystyle{ \displaystyle g(E[x]) \leq E[g(x)] }[/math] as [math]\displaystyle{ \displaystyle g(E[x]) = g(p_1 x_1 + ... p_n x_n) \lt = p_1 g(x_1) + ... + p_n g(x_n) = E[g(x)] }[/math]
Therefore
- [math]\displaystyle{ \displaystyle E[(w(x))^2] \geq (E[\left| w(x) \right|])^2 }[/math]
- [math]\displaystyle{ \displaystyle E[(w(x))^2] \geq \left(\int \left| \frac{f(x)h(x)}{g(x)} \right| g(x) dx \right)^2 }[/math]
and
- [math]\displaystyle{ \displaystyle \left(\int \left| \frac{f(x)h(x)}{g(x)} \right| g(x) dx \right)^2 }[/math]
- [math]\displaystyle{ \displaystyle = \left(\int \frac{f(x)\left| h(x) \right|}{g(x)} g(x) dx \right)^2 }[/math]
- [math]\displaystyle{ \displaystyle = \left(\int \left| h(x) \right| f(x) dx \right)^2 }[/math] since [math]\displaystyle{ \displaystyle f }[/math] and [math]\displaystyle{ \displaystyle g }[/math] are density functions, [math]\displaystyle{ \displaystyle f, g }[/math] cannot be negative.
Thus, this is a lower bound on [math]\displaystyle{ \displaystyle E[(w(x))^2] }[/math]. If we replace [math]\displaystyle{ \displaystyle g^*(x) }[/math] into [math]\displaystyle{ \displaystyle E[g^*(x)] }[/math], we can see that the result is as we require. Details omitted.
However, this is mostly of theoritical interest. In practice, it is impossible or very difficult to compute [math]\displaystyle{ \displaystyle g^* }[/math].
Note: Jensen's inequality is actually unnecessary here. We just use it to get [math]\displaystyle{ E[(w(x))^2] \geq (E[|w(x)|])^2 }[/math], which could be derived using variance properties: [math]\displaystyle{ 0 \leq Var[|w(x)|] = E[|w(x)|^2] - (E[|w(x)|])^2 = E[(w(x))^2] - (E[|w(x)|])^2 }[/math].