a Deeper Look into Importance Sampling: Difference between revisions

From statwiki
Jump to navigation Jump to search
m (Conversion script moved page A Deeper Look into Importance Sampling to a Deeper Look into Importance Sampling: Converting page titles to lowercase)
 
(27 intermediate revisions by 8 users not shown)
Line 20: Line 20:
::<math>\displaystyle = \int \frac{h^2(x)f^2(x)}{g(x)} dx </math>
::<math>\displaystyle = \int \frac{h^2(x)f^2(x)}{g(x)} dx </math>


We can see that if <math>\displaystyle g(x) \rightarrow 0 </math>, then <math>\displaystyle E[(w(x))^2] \rightarrow \infty </math>. This occurs if <math>\displaystyle g </math> has a thinner tail than <math>\displaystyle f </math> then <math>\frac{h^2(x)f^2(x)}{g(x)} </math> could be infinitely large.
We can see that if <math>\displaystyle g(x) \rightarrow 0 </math>, then <math>\displaystyle E[(w(x))^2] \rightarrow \infty </math>. This occurs if <math>\displaystyle g </math> has a thinner tail than <math>\displaystyle f </math> then <math>\frac{h^2(x)f^2(x)}{g(x)} </math> could be infinitely large. The general idea here is that <math>\frac{f(x)}{g(x)} </math> should not be large.


=====Remark 1=====
=====Remark 1=====
Line 27: Line 27:


=====Remark 2=====
=====Remark 2=====
It is useful if we can choose <math>\displaystyle g </math> to be similar to <math>\displaystyle f</math> in terms of shape. Analytically, we can show that there is a <math>\displaystyle g</math> that would result in a variance that is minimized.
It is useful if we can choose <math>\displaystyle g </math> to be similar to <math>\displaystyle f</math> in terms of shape. Ideally, the optimal <math>\displaystyle g </math> should be similar to <math>\displaystyle \left| h(x) \right|f(x)</math>, and have a thicker tail. Analytically, we can show that the best <math>\displaystyle g</math> is the one that would result in a variance that is minimized.


'''Theorem:''' The choice of <math>\displaystyle g</math> that minimizes variance of <math>\hat I</math> is <math>\displaystyle g^*(x)=\frac{\left| h(x) \right| f(x)}{\int h(s) f(s) ds}</math>.
=====Remark 3=====
Choose <math>\displaystyle g </math> such that it is similar to <math>\displaystyle \left| h(x) \right| f(x) </math> in terms of shape. That is, we want <math>\displaystyle g \propto \displaystyle \left| h(x) \right| f(x) </math>


'''Proof:'''<br />
 
====Theorem (Minimum Variance Choice of <math>\displaystyle g</math>) ====
The choice of <math>\displaystyle g</math> that minimizes variance of <math>\hat I</math> is <math>\displaystyle g^*(x)=\frac{\left| h(x) \right| f(x)}{\int \left| h(s) \right| f(s) ds}</math>.
 
=====Proof:=====
We know that <math>\displaystyle w(x)=\frac{f(x)h(x)}{g(x)} </math>
We know that <math>\displaystyle w(x)=\frac{f(x)h(x)}{g(x)} </math>


Line 37: Line 42:
:: <math>\displaystyle Var[w(x)] </math>
:: <math>\displaystyle Var[w(x)] </math>
:: <math>\displaystyle = E[(w(x)^2)] - [E[w(x)]]^2 </math>
:: <math>\displaystyle = E[(w(x)^2)] - [E[w(x)]]^2 </math>
:: <math>\displaystyle = \int (\frac{f(x)h(x)}{g(x)})^2 g(x) dx - [\int \frac{f(x)h(x)}{g(x)}g(x)dx]^2 </math>
:: <math>\displaystyle = \int \left(\frac{f(x)h(x)}{g(x)} \right)^2 g(x) dx - \left[\int \frac{f(x)h(x)}{g(x)}g(x)dx \right]^2 </math>
:: <math>\displaystyle = \int (\frac{f(x)h(x)}{g(x)})^2 g(x) dx - [\int f(x)h(x)]^2 </math>
:: <math>\displaystyle = \int \left(\frac{f(x)h(x)}{g(x)} \right)^2 g(x) dx - \left[\int f(x)h(x) \right]^2 </math>


As we can see, the second term does not depend on <math>\displaystyle g(x) </math>. Therefore to minimize <math>\displaystyle Var[w(x)] </math> we need to minimize the first term. We will use '''Jenson's Inequality'''.
As we can see, the second term does not depend on <math>\displaystyle g(x) </math>. Therefore to minimize <math>\displaystyle Var[w(x)] </math> we only need to minimize the first term. In doing so we will use '''Jensen's Inequality'''.


'''Jenson's Inequality'''<br />
======Aside: Jensen's Inequality======
If <math>\displaystyle g </math> is a convex function then <math>\displaystyle g(\alpha x_1 + (1-\alpha)x_2) <= \alpha g(x_1) + (1-\alpha) g(x_2)</math><br />
If <math>\displaystyle g </math> is a convex function ( twice differentiable and <math>\displaystyle g''(x) \geq 0 </math> ) then <math>\displaystyle g(\alpha x_1 + (1-\alpha)x_2) \leq \alpha g(x_1) + (1-\alpha) g(x_2)</math><br />
Essentially the definition of convexity implies that the line segment between two points on a curve lies above the curve, which can then be generalized to higher dimensions:
::<math>\displaystyle g(\alpha_1 x_1 + \alpha_2 x_2 + ... + \alpha_n x_n) \leq \alpha_1 g(x_1) + \alpha_2 g(x_2) + ... + \alpha_n g(x_n) </math> where <math> \alpha_1 + \alpha_2 + ... + \alpha_n = 1 </math>


Using Jenson's Inequality, <br />
=====Proof (cont)=====
::<math>\displaystyle g(E[x]) <= E[g(x)] </math>
Using Jensen's Inequality, <br />
::<math>\displaystyle E[(w(x))^2] >= (E[\left| w(x) \right|])^2 </math>
::<math>\displaystyle g(E[x]) \leq E[g(x)] </math> as <math>\displaystyle g(E[x]) = g(p_1 x_1 + ... p_n x_n) <= p_1 g(x_1) + ... + p_n g(x_n) = E[g(x)] </math>
::<math>\displaystyle E[(w(x))^2] >= (E[\int \left| \frac{f(x)h(x)}{g(x)} \right|])^2 </math> <br />
Therefore
::<math>\displaystyle E[(w(x))^2] \geq (E[\left| w(x) \right|])^2 </math>
::<math>\displaystyle E[(w(x))^2] \geq \left(\int \left| \frac{f(x)h(x)}{g(x)} \right| g(x) dx \right)^2 </math> <br />
and
::<math>\displaystyle \left(\int \left| \frac{f(x)h(x)}{g(x)} \right| g(x) dx \right)^2 </math>
::<math>\displaystyle = \left(\int \frac{f(x)\left| h(x) \right|}{g(x)} g(x) dx \right)^2 </math>
::<math>\displaystyle = \left(\int \left| h(x) \right| f(x) dx \right)^2 </math> since <math>\displaystyle f </math> and <math>\displaystyle g</math> are density functions, <math>\displaystyle f, g </math> cannot be negative.  <br />


::<math>\displaystyle (E[\int \left| \frac{f(x)h(x)}{g(x)} \right|])^2 </math>
Thus, this is a lower bound on <math>\displaystyle E[(w(x))^2]</math>. If we replace <math>\displaystyle g^*(x) </math> into <math>\displaystyle E[g^*(x)]</math>, we can see that the result is as we require. Details omitted.<br />
::<math>\displaystyle = (\int \frac{f(x)\left| h(x) \right|}{g(x)} g(x) dx)^2 </math>
::<math>\displaystyle = (\int f(x)\left| h(x) \right| g(x)dx)^2 </math> since <math>\displaystyle f </math> and <math>\displaystyle g</math> are density functions, <math>\displaystyle f, g </math> cannot be negative. <br />


Thus, this is a lower bound on <math>\displaystyle E[(w(x))^2]</math>. If we replace <math>\displaystyle g^*(x) into E[g^*(x)], we can see that our result is as we require. Details omitted<br />
However, this is mostly of theoritical interest. In practice, it is impossible or very difficult to compute <math>\displaystyle g^*</math>.


However, in practice, it is difficult to compute <math>\displaystyle g^*</math>.
Note: Jensen's inequality is actually unnecessary here. We just use it to get <math>E[(w(x))^2] \geq (E[|w(x)|])^2</math>, which could be derived using variance properties: <math>0 \leq Var[|w(x)|] = E[|w(x)|^2] - (E[|w(x)|])^2 = E[(w(x))^2] - (E[|w(x)|])^2</math>.
 
=====Remark 3=====
Choose <math>\displaystyle g </math> such that it is similar to <math>\displaystyle \left| h(x) \right| f(x) </math> in terms of shape.


===[[Continuing on]] - June 4, 2009===
===[[Importance Sampling and Markov Chain Monte Carlo (MCMC)]] - June 4, 2009===

Latest revision as of 08:45, 30 August 2017

A Deeper Look into Importance Sampling - June 2, 2009

From last class, we have determined that an integral can be written in the form [math]\displaystyle{ I = \displaystyle\int h(x)f(x)\,dx }[/math] [math]\displaystyle{ = \displaystyle\int \frac{h(x)f(x)}{g(x)}g(x)\,dx }[/math] We continue our discussion of Importance Sampling here.

Importance Sampling

We can see that the integral [math]\displaystyle{ \displaystyle\int \frac{h(x)f(x)}{g(x)}g(x)\,dx = \int \frac{f(x)}{g(x)}h(x) g(x)\,dx }[/math] is just [math]\displaystyle{ \displaystyle E_g(h(x)) \rightarrow }[/math]the expectation of h(x) with respect to g(x), where [math]\displaystyle{ \displaystyle \frac{f(x)}{g(x)} }[/math] is a weight [math]\displaystyle{ \displaystyle\beta(x) }[/math]. In the case where [math]\displaystyle{ \displaystyle f \gt g }[/math], a greater weight for [math]\displaystyle{ \displaystyle\beta(x) }[/math] will be assigned. Thus, the points with more weight are deemed more important, hence "importance sampling". This can be seen as a variance reduction technique.

Problem

The method of Importance Sampling is simple but can lead to some problems. The [math]\displaystyle{ \displaystyle \hat I }[/math] estimated by Importance Sampling could have infinite standard error.

Given [math]\displaystyle{ \displaystyle I= \int w(x) g(x) dx }[/math] [math]\displaystyle{ = \displaystyle E_g(w(x)) }[/math] [math]\displaystyle{ = \displaystyle \frac{1}{N}\sum_{i=1}^{N} w(x_i) }[/math] where [math]\displaystyle{ \displaystyle w(x)=\frac{f(x)h(x)}{g(x)} }[/math].

Obtaining the second moment,

[math]\displaystyle{ \displaystyle E[(w(x))^2] }[/math]
[math]\displaystyle{ \displaystyle = \int (\frac{h(x)f(x)}{g(x)})^2 g(x) dx }[/math]
[math]\displaystyle{ \displaystyle = \int \frac{h^2(x) f^2(x)}{g^2(x)} g(x) dx }[/math]
[math]\displaystyle{ \displaystyle = \int \frac{h^2(x)f^2(x)}{g(x)} dx }[/math]

We can see that if [math]\displaystyle{ \displaystyle g(x) \rightarrow 0 }[/math], then [math]\displaystyle{ \displaystyle E[(w(x))^2] \rightarrow \infty }[/math]. This occurs if [math]\displaystyle{ \displaystyle g }[/math] has a thinner tail than [math]\displaystyle{ \displaystyle f }[/math] then [math]\displaystyle{ \frac{h^2(x)f^2(x)}{g(x)} }[/math] could be infinitely large. The general idea here is that [math]\displaystyle{ \frac{f(x)}{g(x)} }[/math] should not be large.

Remark 1

It is evident that [math]\displaystyle{ \displaystyle g(x) }[/math] should be chosen such that it has a thicker tail than [math]\displaystyle{ \displaystyle f(x) }[/math]. If [math]\displaystyle{ \displaystyle f }[/math] is large over set [math]\displaystyle{ \displaystyle A }[/math] but [math]\displaystyle{ \displaystyle g }[/math] is small, then [math]\displaystyle{ \displaystyle \frac{f}{g} }[/math] would be large and it would result in a large variance.

Remark 2

It is useful if we can choose [math]\displaystyle{ \displaystyle g }[/math] to be similar to [math]\displaystyle{ \displaystyle f }[/math] in terms of shape. Ideally, the optimal [math]\displaystyle{ \displaystyle g }[/math] should be similar to [math]\displaystyle{ \displaystyle \left| h(x) \right|f(x) }[/math], and have a thicker tail. Analytically, we can show that the best [math]\displaystyle{ \displaystyle g }[/math] is the one that would result in a variance that is minimized.

Remark 3

Choose [math]\displaystyle{ \displaystyle g }[/math] such that it is similar to [math]\displaystyle{ \displaystyle \left| h(x) \right| f(x) }[/math] in terms of shape. That is, we want [math]\displaystyle{ \displaystyle g \propto \displaystyle \left| h(x) \right| f(x) }[/math]


Theorem (Minimum Variance Choice of [math]\displaystyle{ \displaystyle g }[/math])

The choice of [math]\displaystyle{ \displaystyle g }[/math] that minimizes variance of [math]\displaystyle{ \hat I }[/math] is [math]\displaystyle{ \displaystyle g^*(x)=\frac{\left| h(x) \right| f(x)}{\int \left| h(s) \right| f(s) ds} }[/math].

Proof:

We know that [math]\displaystyle{ \displaystyle w(x)=\frac{f(x)h(x)}{g(x)} }[/math]

The variance of [math]\displaystyle{ \displaystyle w(x) }[/math] is

[math]\displaystyle{ \displaystyle Var[w(x)] }[/math]
[math]\displaystyle{ \displaystyle = E[(w(x)^2)] - [E[w(x)]]^2 }[/math]
[math]\displaystyle{ \displaystyle = \int \left(\frac{f(x)h(x)}{g(x)} \right)^2 g(x) dx - \left[\int \frac{f(x)h(x)}{g(x)}g(x)dx \right]^2 }[/math]
[math]\displaystyle{ \displaystyle = \int \left(\frac{f(x)h(x)}{g(x)} \right)^2 g(x) dx - \left[\int f(x)h(x) \right]^2 }[/math]

As we can see, the second term does not depend on [math]\displaystyle{ \displaystyle g(x) }[/math]. Therefore to minimize [math]\displaystyle{ \displaystyle Var[w(x)] }[/math] we only need to minimize the first term. In doing so we will use Jensen's Inequality.

Aside: Jensen's Inequality

If [math]\displaystyle{ \displaystyle g }[/math] is a convex function ( twice differentiable and [math]\displaystyle{ \displaystyle g''(x) \geq 0 }[/math] ) then [math]\displaystyle{ \displaystyle g(\alpha x_1 + (1-\alpha)x_2) \leq \alpha g(x_1) + (1-\alpha) g(x_2) }[/math]
Essentially the definition of convexity implies that the line segment between two points on a curve lies above the curve, which can then be generalized to higher dimensions:

[math]\displaystyle{ \displaystyle g(\alpha_1 x_1 + \alpha_2 x_2 + ... + \alpha_n x_n) \leq \alpha_1 g(x_1) + \alpha_2 g(x_2) + ... + \alpha_n g(x_n) }[/math] where [math]\displaystyle{ \alpha_1 + \alpha_2 + ... + \alpha_n = 1 }[/math]
Proof (cont)

Using Jensen's Inequality,

[math]\displaystyle{ \displaystyle g(E[x]) \leq E[g(x)] }[/math] as [math]\displaystyle{ \displaystyle g(E[x]) = g(p_1 x_1 + ... p_n x_n) \lt = p_1 g(x_1) + ... + p_n g(x_n) = E[g(x)] }[/math]

Therefore

[math]\displaystyle{ \displaystyle E[(w(x))^2] \geq (E[\left| w(x) \right|])^2 }[/math]
[math]\displaystyle{ \displaystyle E[(w(x))^2] \geq \left(\int \left| \frac{f(x)h(x)}{g(x)} \right| g(x) dx \right)^2 }[/math]

and

[math]\displaystyle{ \displaystyle \left(\int \left| \frac{f(x)h(x)}{g(x)} \right| g(x) dx \right)^2 }[/math]
[math]\displaystyle{ \displaystyle = \left(\int \frac{f(x)\left| h(x) \right|}{g(x)} g(x) dx \right)^2 }[/math]
[math]\displaystyle{ \displaystyle = \left(\int \left| h(x) \right| f(x) dx \right)^2 }[/math] since [math]\displaystyle{ \displaystyle f }[/math] and [math]\displaystyle{ \displaystyle g }[/math] are density functions, [math]\displaystyle{ \displaystyle f, g }[/math] cannot be negative.

Thus, this is a lower bound on [math]\displaystyle{ \displaystyle E[(w(x))^2] }[/math]. If we replace [math]\displaystyle{ \displaystyle g^*(x) }[/math] into [math]\displaystyle{ \displaystyle E[g^*(x)] }[/math], we can see that the result is as we require. Details omitted.

However, this is mostly of theoritical interest. In practice, it is impossible or very difficult to compute [math]\displaystyle{ \displaystyle g^* }[/math].

Note: Jensen's inequality is actually unnecessary here. We just use it to get [math]\displaystyle{ E[(w(x))^2] \geq (E[|w(x)|])^2 }[/math], which could be derived using variance properties: [math]\displaystyle{ 0 \leq Var[|w(x)|] = E[|w(x)|^2] - (E[|w(x)|])^2 = E[(w(x))^2] - (E[|w(x)|])^2 }[/math].

Importance Sampling and Markov Chain Monte Carlo (MCMC) - June 4, 2009