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Introduction/Motivation

• Deep Neural Networks have achieved SOTA in many fields mainly 
because of their ability to model complex and non-linear interactions.


• Lack interpretability. Considered Black-Box models.


• The paper introduces a decomposition based algorithm for analysing 
predictions made by LSTMs. 
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Previous Work

• Computing Word Level Importance Scores


• Decomposition-based for CNNs


• Analysing the gate activations


• Attention-based models (Indirect approach)
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LSTMs
• A special kind of RNN which effectively handles long term 

dependencies.


• Gives a little more control than GRUs.


• Have a memory cell state which runs through the entire network.
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• Following are the update equations


• Intuitively we can think of the forget gate as how much previous 
memory(information) do we want to forget; input gate as controlling 
whether or not to let new input in; g gate controlling what do we want 
to add and finally the output gate as controlling how much the current 
information(at current time step) should flow out.


• The final hidden state is fed into a multinomial logistic regression. 
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Contextual Decomposition

• Given a word/phrase/sentence provide a decomposition of the output 
of a trained LSTM model as a sum of two contributions.


• Resulting solely from the given phrase


• Involving atleast in part, elements outside of the phrase


• The method does not change the underlying architecture or the 
accuracy of the model.
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• Let the arbitrary input phrase be               where 1≤q≤r≤T, where T 
represents the length of the sentence. CD decomposes the output and 
cell state        respectively as


• Using this decomposition the final softmax output can be written as


• Mirroring the recursive nature of LSTMs, we recursively compute our 
decompositions.
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xq, . . . , xr

ct, ht

ht = βt + γt

ct = βc
t + γc

t

p = SoftMax(WβT + WγT)



Disambiguating Interaction 
between gates

• Let’s assume that the non-linear operations of the gates can be 
represented in a linear fashion.


• The products between gates also become linear sums of contributions 
from the 2 factors mentioned before.


• Here we derive equations for the case when 
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q ≤ t ≤ r

ft = σ(Wf xt + Vf ht−1 + bf )
= Lσ(Wf xt) + Lσ(Vf ht−1) + Lσ(bf )



• Terms are determined to derive solely from the specified phrase if they 
involve products from some combination of                   and    or    (but 
not both). When t is not within the phrase, products involving     are 
treated as not deriving from the phrase.


• Similarly
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βt−1, βc
t−1, xt bi bg

xt

it ⊙ gt = βu
t + γu

t



• After the decomposition of two components of our memory cell we can 
sum their contributions


• Now it is relatively easy to compute the cell’s output.


• Decomposing the output gate like the rest of the gates does not lead to 
improvements.
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ht = ot ⊙ tanh(ct)
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Linearizing the activation 
functions

• The problem that we wish to solve can be represented as shown


• In cases where y had a natural ordering we could have used the 
differences of partial sums as a linearisation technique
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• But in our case the terms do not follow any particular ordering.


• While calculating     we could either write it as a sum of                         
or                      . Thus we take the average over all the possible 
orderings. 
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Experiments
• The evaluation is done on the task of sentiment analysis.


• Three main results are evaluated for


• Standard problem of word-level importance scores.


• Word and phrase level importance in cases of compositionality.


• Instances of positive and negative negation.


• Stanford Sentiment Treebank(SST) and Yelp Polarity(YP) datasets are 
used.
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Baselines

• 4 state-of-the-art baselines are used:


• Cell Decomposition(Murdoch & Szlam, 2017)


• Integrated Gradients(Sundararajan et al., 2017)


• Leave One Out(Li et al., 2016)


• Gradient times input(gradient of the output probability with respect 
to the word embeddings is computed which is finally reported as a 
dot product with the word vector)
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Unigram(Word) Scores

• CD scores for individual words are extracted from the LSTM are 
compared on similarity with the logistic regression coefficients. 
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Identifying Dissenting 
Subphrases

• CD can correctly identify the sentiment for subphrases in a 
phrase(atmost 5 words) where the polarity differs.
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High-Level Compositionality

• CD is also better at identifying cases where a sizeable portion of a 
sentence has an opposite polarity from the sentence.
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Capturing Negation
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Similar Words
• A key aspect of the CD algorithm is that it helps us learn the value of a 

dense embedding vector (   ) for a word or a phrase.


• For words and binary interactions, avg(    ) is calculated across the 
data.


• Then, using similarity measures in the embedding space(eg. cosine 
similarity) we can easily find similar phrases/words
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Conclusion/Thoughts
• While the method itself is novel in that it moves past the traditional approach of looking just 

at word level importance scores; it only looks at one specific architecture which is applied to 
a simple problem.


• The authors don't talk about any future directions in the paper but a discussion about it 
happened at ICLR. Following are the importance points:


• Look at interpreting a more complex model, for example, seq2seq. The author pointed 
out that he was affirmative that this model could be extended for such purposes 
although the computational complexity would increase since we would be predicting 
multiple outputs.


• Look at whether this approach could be generalized to completely different architectures 
like CNN. As of now given a new model, we need to manually work out the math for the 
specific model. Could we develop some general approach towards this? 


• The author pointed out that they are working towards using this approach to interpret 
CNNs.
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Thank-you for your attention.


Questions?


