ShakeDrop Regularization

11/29/2018

Paper By: Yoshihiro Yamada, Masakazu Iwamura, and Koichi Kise

Presented by: Travis Bender

Motivation

- Current state-of-the-art architectures for image classification utilize residual blocks to perform well
- Very deep strategies suffer from overfitting, and have been shown improvement when subjected to regularization
- The previous best regularization approach is limited to a small subset of network architectures and could be generalized.

Basic Residual Block

Residual Network Architectures

Regularization Approaches

Stochastic Depth

 Developed to address vanishing gradients in ResNet

$$G(x) = x + b_l F(x)$$

• $b_l \in \{0,1\}$ is a Bernoulli random variable with probability p_l . Uses a linear decay rule that defines p_l as

$$p_l = 1 - \frac{l}{L}(1 - p_L)$$

- L is the number of layers and p_L is an initial parameter
- Originally developed for ResNet, and later adapted to PyramidNet

ShakeShake Regularization

Developed for use with the ResNeXt architecture

$$G(x) = x + \alpha F_1(x) + (1 - \alpha)F_2(x)$$

- $\alpha \in [0,1]$
- Backwards pass is formulated identically but with another random parameter β
- Interpolates results between each branch, almost like the network is using augmented data

ShakeShake Regularization

ResNeXt (Xie et al., 2017)

ResNeXt + ShakeShake (Gastaldi, 2017)

1-Branch Shake

- An Adaptation of ShakeShake for use in single branch architectures
- $G(x) = x + \alpha F(x)$ for forward pass
- $G(x) = x + \beta F(x)$ for backwards pass

1-Branch Shake Cont.

- Unfortunately, 1-Branch Shake performs horribly when applied in this basic form, achieving an error rate of 77.99% on CIFAR-100
- Failure is caused by perturbation that is too strong.
- Could be improved by combining 1-Branch Shake with Stochastic Depth/ResDrop

ShakeDrop Regularization

- Based on a combination of 1-branch shake and stochastic depth
- Given as

$$G(x) = x + (b_l + \alpha - b_l \alpha) F(x)$$

• Or alternatively, (replace α with β for backwards pass)

$$G(x) = \begin{cases} x + F(x), & \text{if } b_l = 1\\ x + \alpha F(x), & \text{otherwise (i.e., if } b_l = 0) \end{cases}$$

• b_l is a Bernoulli random variable utilizing linear decay rule

$$p_l = 1 - \frac{l}{L}(1 - p_L)$$

ShakeDrop Regularization Cont.

- Causes a single branch to behave as if there are two networks, the original and the one with dropped residual blocks.
- Uses parameter β on backwards pass
- Layers with $b_l = 0$ are not update during a step of training,

ShakeDrop Parameter Search

Average Top-1 errors(%) of PyramidNet + ShakeDrop for different parameters

	α	β	Error (%)	Note
A	1	1	18.01	Equivalent to PyramidNet
В	0	0	17.74	Equivalent to PyramidDrop
С	[0, 1]	[-1,1]	20.61	
D	[0, 1]	[0,1]	18.27	
Е	[-1,1]	1	18.68	
F	[-1,1]	0	17.28	
G	[-1,1]	[-1,1]	18.26	
Н	[-1,1]	[0,1]	16.22	

ShakeDrop Level Setting

Batch – Same scaling coefficients for all images in mini-batch

Image – Same scaling coefficients for each image for each residual block

Channel – Same scaling coefficients for each channel for each residual block

Pixel – Same scaling coefficients for each element in each residual block

α	β	Level	Error (%)	
	[0,1]	Batch	16.22	
[-1, 1]		Image	16.04	
[-1,1]		Channel	16.12	
		Pixel	15.78	

Experiments Setup

- Attempted to match setup as closely as possible to make results comparable
- Learning rate is either determined with a schedule and 300 epochs, or using cosine annealing with an 1800 epochs where specified.
- CIFAR-10/100 was color normalized, horizontally flipped with probability 0.5, and is zero padded to be 40x40, then randomly cropped back to 32x32
- Where specified, data additionally is augmented with either Cutout or Random Erasing
- Wide ResNet added batch normalization to residual blocks
- Type A means the regularization term is inserted before the add term in residual branches, Type B adds the regularization term afterwards.

CIFAR-100 Top-1 Errors

Methods	Regularization Original (%)		EraseReLU (%)	
ResNet-110	Vanilla	28.51	24.93	
<conv-bn-relu-conv-bn-add-< td=""><td>ResDrop</td><td>24.09</td><td>22.88</td></conv-bn-relu-conv-bn-add-<>	ResDrop	24.09	22.88	
(ReLU)>	1-branch Shake	24.18	23.80	
(ReLO)>	ShakeDrop	×	22.68	
ResNet-164 Bottleneck	Vanilla	22.00	21.96	
<conv-bn-relu-conv-bn-relu-< td=""><td>ResDrop</td><td>21.96</td><td>20.35</td></conv-bn-relu-conv-bn-relu-<>	ResDrop	21.96	20.35	
Conv-BN-add-(ReLU)>	1-branch Shake	22.20	21.60	
Conv-dud-(Relici)>	ShakeDrop	×	19.89	
ResNeXt-29 8-64d Bottleneck	Vanilla	20.90	20.25	
Conv-BN-ReLU-Conv-BN-ReLU-	ResDrop	20.66	20.28	
Conv-BN-add-(ReLU)>	1-branch Shake	22.70	24.00	
Colly-Biv-add-(ReLO)>	ShakeDrop	×	19.90	
PyramidNet-272 α200 Bottleneck	Vanilla	*16.35		
SN-Conv-BN-ReLU-Conv-BN-ReLU-	ResDrop	15.94	N/A	
Conv-BN-add>	1-branch Shake	71.51	IN/A	
Conv-Div-aud/	ShakeDrop	ShakeDrop 14.90		

CIFAR-100 Top-1 Errors Continued

Methods	Regularization	Original (%)	w/ BN (%)
	Vanilla	26.49	24.24
Wide-ResNet-28-10k	ResDrop	34.19	26.64
<bn-relu-conv-bn-relu-conv-(bn)-add></bn-relu-conv-bn-relu-conv-(bn)-add>	1-branch Shake	90.73	58.89
	ShakeDrop	76.87	19.12

Methods	Regularization	Original (%)	EraseReLU (%)
	Vanilla	23.82	21.75
ResNeXt-164 2-1-40d Bottleneck	ResDrop Type-A	21.38	20.44
<conv-bn-relu-conv-bn-relu-< td=""><td>ResDrop Type-B</td><td>21.34</td><td>20.21</td></conv-bn-relu-conv-bn-relu-<>	ResDrop Type-B	21.34	20.21
Conv-BN-add-(ReLU)>	Shake-Shake	22.35	22.51
Conv-Brv-add-(RCLO)>	ShakeDrop Type-A	×	19.98
	ShakeDrop Type-B	×	19.83
	Vanilla	21.19	×
ResNeXt-29 2-4-64d Bottleneck	ResDrop Type-A	21.12	20.13
<conv-bn-relu-conv-bn-relu-< td=""><td>ResDrop Type-B</td><td>19.27</td><td>19.01</td></conv-bn-relu-conv-bn-relu-<>	ResDrop Type-B	19.27	19.01
Conv-BN-add-(ReLU)>	Shake-Shake	19.16	18.82
Conv-Brv-add-(RCEO)/	ShakeDrop Type-A	×	20.07
	ShakeDrop Type-B	×	18.17

Tiny ImageNet

Methods	Reg	Regularization		Original (%)		seReLU (%)	
DogNot 110		Vanilla		42.07		41.24	
ResNet-110 <conv-bn-relu-conv-bn-add-< td=""><td>1</td><td>ResDrop</td><td></td><td>43.74</td><td></td><td>42.50</td></conv-bn-relu-conv-bn-add-<>	1	ResDrop		43.74		42.50	
	1-br	anch Shake		45.56		45.16	
(ReLU)>	S	hakeDrop		×		48.92	
ResNet-164 Bottleneck		Vanilla		38.20	36.52		
Conv-BN-ReLU-Conv-BN-ReLU-	I	ResDrop	,	37.17		38.09	
Conv-BN-add-(ReLU)>	1-bi	anch Shake		39.29		42.10	
Conv-Brv-add-(RCLO)/	S	hakeDrop		×		42.80	
		Vanilla		36.52			
PyramidNet-110 α 270	ResDrop			33.97		N/A	
<bn-conv-bn-relu-conv-bn-add></bn-conv-bn-relu-conv-bn-add>	1-branch Shake			85.84		IV/A	
	S	hakeDrop		32.44			
PyramidNet-200 α300 Bottleneck	Vanilla		32.92		N/A		
SN-Conv-BN-ReLU-Conv-BN-ReLU-	ResDrop		32.17				
Conv-BN-add>	1-branch Shake		78.12				
Conv-Brv-add/	ShakeDrop			31.15		<u> </u>	
Methods		Regularizati		ion Original		w/ BN (%)	
		Vanilla	99.50)	37.88	
Wide-ResNet-28-10k		ResDrop		99.50		45.80	
<bn-relu-conv-bn-relu-conv-(bn)-a< td=""><td>dd></td><td>1-branch Sh</td><td>ake</td><td colspan="2">ake 98.68</td><td>93.62</td></bn-relu-conv-bn-relu-conv-(bn)-a<>	dd>	1-branch Sh	ake	ake 98.68		93.62	
		ShakeDro	p	91.11		36.39	

State-of-the-Art Comparisons

Made ad	Das	Cas	Fil	Depth	#Param	CIFAR	CIFAR
Method	Reg	Cos				-10 (%)	-100 (%)
				118	25.7M	*2.99	*16.18
				106	25.1M	*2.99	*15.68
Counted Engage http				76	24.6M	*2.92	*15.76
Coupled Ensemble				64	24.9M	*3.13	*15.95
(Dutt et al., 2017)				-	50M	*2.72	*15.13
				-	75M	*2.68	*15.04
				-	100M	*2.73	*15.05
ResNeXt				26	26.2M	+3.58	_
(Xie et al., 2017)		✓		29	34.4M	-	+16.34
ResNeXt + Shake-Shake	SS	✓		26	26.2M	*2.86	-
(Gastaldi, 2017)				29	34.4M	-	*15.85
ResNeXt + Shake-Shake + Cutout	SS	✓	CO	26	26.2M	*2.56	-
(DeVries & Taylor, 2017b)				29	34.4M	_	*15.20
PyramidNet				272	26.0M	*3.31	*16.35
(Han et al., 2017b)		√	RE	272	26.0M	3.42	16.66
PyramidDrop	RD			272	26.0M	3.83	15.94
(Yamada et al., 2016)	RD	√	RE	272	26.0M	2.91	15.48
	SD			272	26.0M	3.41	14.90
PyramdNet + ShakeDrop	SD		RE	272	26.0M	2.89	13.85
(Proposed)	SD	√		272	26.0M	2.67	13.99
	SD	✓	RE	272	26.0M	2.31	12.19

State-of-the-Art Comparisons

Made ad	Das	Cas	Fil	Depth	#Param	CIFAR	CIFAR
Method	Reg	Cos				-10 (%)	-100 (%)
				118	25.7M	*2.99	*16.18
				106	25.1M	*2.99	*15.68
Counted Engage http				76	24.6M	*2.92	*15.76
Coupled Ensemble				64	24.9M	*3.13	*15.95
(Dutt et al., 2017)				-	50M	*2.72	*15.13
				-	75M	*2.68	*15.04
				-	100M	*2.73	*15.05
ResNeXt				26	26.2M	+3.58	_
(Xie et al., 2017)		✓		29	34.4M	-	+16.34
ResNeXt + Shake-Shake	SS	✓		26	26.2M	*2.86	-
(Gastaldi, 2017)				29	34.4M	-	*15.85
ResNeXt + Shake-Shake + Cutout	SS	✓	CO	26	26.2M	*2.56	-
(DeVries & Taylor, 2017b)				29	34.4M	_	*15.20
PyramidNet				272	26.0M	*3.31	*16.35
(Han et al., 2017b)		√	RE	272	26.0M	3.42	16.66
PyramidDrop	RD			272	26.0M	3.83	15.94
(Yamada et al., 2016)	RD	√	RE	272	26.0M	2.91	15.48
	SD			272	26.0M	3.41	14.90
PyramdNet + ShakeDrop	SD		RE	272	26.0M	2.89	13.85
(Proposed)	SD	√		272	26.0M	2.67	13.99
	SD	✓	RE	272	26.0M	2.31	12.19

Training Loss

Gradient Averages During Training

Gradient Variance During Training

Conclusion & Critique

- ShakeDrop is a meaningful development for State-of-the-art image classification, improving classification accuracy across for all tested networks, without dramatically increasing the number of parameters used.
- Limited mathematical justification, relies heavily on intuition and empirical results

References

- [Yamada et al., 2018] Yamada Y, Iwamura M, Kise K. ShakeDrop regularization. arXiv preprint arXiv:1802.02375. 2018 Feb 7.
- [He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proc. CVPR, 2016.
- [Zagoruyko & Komodakis, 2016] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Proc. BMVC, 2016.
- [Han et al., 2017] Dongyoon Han, Jiwhan Kim, and Junmo Kim. Deep pyramidal residual networks. In Proc. CVPR, 2017a.
- [Xie et al., 2017] Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and Kaiming He. Aggregated residual transformations for deep neural networks. In Proc. CVPR, 2017.
- [Huang et al., 2016] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Weinberger. Deep networks with stochastic depth. arXiv preprint arXiv:1603.09382v3, 2016.
- [Gastaldi, 2017] Xavier Gastaldi. Shake-shake regularization. arXiv preprint arXiv:1705.07485v2, 2017.
- [Loshilov & Hutter, 2016] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983, 2016.
- [DeVries & Taylor, 2017b] Terrance DeVries and Graham W. Taylor. Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552, 2017b.
- [Zhong et al., 2017] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data augmentation. arXiv preprint arXiv:1708.04896, 2017.
- [Dutt et al., 2017] Anuvabh Dutt, Denis Pellerin, and Georges Qunot. Coupled ensembles of neural networks. arXiv preprint 1709.06053v1, 2017.
- [Veit et al., 2016] Andreas Veit, Michael J Wilber, and Serge Belongie. Residual networks behave like ensembles of relatively shallow networks. Advances in Neural Information Processing Systems 29, 2016.

