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Motivation

▪ Current state-of-the-art architectures for image classification utilize residual 
blocks to perform well

▪ Very deep strategies suffer from overfitting, and have been shown improvement 
when subjected to regularization

▪ The previous best regularization approach is limited to a small subset of network 
architectures and could be generalized.
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Basic Residual Block
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Residual Network Architectures
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Stochastic Depth

▪ Developed  to address vanishing gradients in 
ResNet

▪ 𝑏𝑙 ∈ 0,1 is a Bernoulli random variable with 
probability 𝑝𝑙. Uses a linear decay rule that 
defines 𝑝𝑙 as

▪ 𝐿 is the number of layers and 𝑝𝐿 is an initial 
parameter

▪ Originally developed for ResNet, and later 
adapted to PyramidNet

ShakeShake Regularization

▪ Developed for use with the ResNeXt
architecture

▪ 𝛼 ∈ 0,1

▪ Backwards pass is formulated identically but 
with another random parameter 𝛽

▪ Interpolates results between each branch, 
almost like the network is using augmented 
data

Regularization Approaches
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ShakeShake Regularization
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ResNeXt (Xie et al., 2017)
ResNeXt + ShakeShake (Gastaldi, 2017)



1-Branch Shake

▪ An Adaptation of ShakeShake for use in single branch architectures

▪ 𝐺 𝑥 = 𝑥 + 𝛼𝐹 𝑥 for forward pass

▪ 𝐺 𝑥 = 𝑥 + 𝛽𝐹 𝑥 for backwards pass
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1-Branch Shake Cont. 

▪ Unfortunately, 1-Branch Shake performs horribly when applied in this basic form, 
achieving an error rate of 77.99% on CIFAR-100

▪ Failure is caused by perturbation that is too strong. 

▪ Could be improved by combining 1-Branch Shake with Stochastic Depth/ResDrop
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ShakeDrop Regularization

▪ Based on a combination of 1-branch shake and stochastic depth

▪ Given as

▪ Or alternatively, (replace 𝛼 with 𝛽 for backwards pass)

▪ 𝑏𝑙 is a Bernoulli random variable utilizing linear decay rule
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ShakeDrop Regularization Cont.

▪ Causes a single branch to behave as if there are two networks, the original and the 
one with dropped residual blocks. 

▪ Uses parameter 𝛽 on backwards pass

▪ Layers with 𝑏𝑙 = 0 are not update during a step of training, 
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ShakeDrop Parameter Search

Average Top-1 errors(%) of PyramidNet + ShakeDrop for different parameters
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ShakeDrop Level Setting

Batch – Same scaling coefficients for all images in mini-batch

Image – Same scaling coefficients for each image for each residual block

Channel – Same scaling coefficients for each channel for each residual block

Pixel – Same scaling coefficients for each element in each residual block
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Experiments Setup

▪ Attempted to match setup as closely as possible to make results comparable

▪ Learning rate is either determined with a schedule and 300 epochs, or using 
cosine annealing with an 1800 epochs where specified.

▪ CIFAR-10/100 was color normalized, horizontally flipped with probability 0.5, 
and is zero padded to be 40x40, then randomly cropped back to 32x32

▪ Where specified, data additionally is augmented with either Cutout or Random 
Erasing 

▪ Wide ResNet added batch normalization to residual blocks

▪ Type A means the regularization term is inserted before the add term in residual 
branches, Type B adds the regularization term afterwards. 
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CIFAR-100 Top-1 Errors
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CIFAR-100 Top-1 Errors Continued
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Tiny ImageNet
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State-of-the-Art Comparisons
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State-of-the-Art Comparisons
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Training Loss
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Gradient Averages During Training
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Gradient Variance During Training
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Conclusion & Critique

▪ ShakeDrop is a meaningful development for State-of-the-art image classification, 
improving classification accuracy across for all tested networks, without 
dramatically increasing the number of parameters used.

▪ Limited mathematical justification, relies heavily on intuition and empirical 
results
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